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Why configurations are so important?

• Software systems are configurable

• Configurations are parameters to 

control the behavior of a system
• Configurations of Apache:

• HostNameLookups

• FollowSimLinks

• ….

• Different configurations of system will 

result in different performance
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Find the fastest configuration 
setting for given a sample 
program?

Just run it?

Example



Find the fastest configuration 
setting for given a sample 
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Just run it?
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Surrogate is a cheap version of the actual system

We need a Surrogate!

APACHE
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Who endorses Surrogates?

Software EngineeringOther Communities
- Aerospace 

- Axial compressor blade shape 
               optimization [Samad08]

- Hydraulic turbine diffuser 
      shape optimization [Marjavaara07]

- Engineering Design 
- Enhanced oil recovery process [Sanchez06]
- Design of composite materials [Sakata08]
- Alkaline-surfactant-polymer flooding 

     processes [Zerpa05]

No surrogates….
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     processes [Zerpa05]

No surrogates….

Most Similar But NOT Surrogates:
- Heuristic method to predict response times 

[Siegmund’12]
- Random Sampling to build a prediction model 

[Guo’13, Sarkar’15] 



Our Surrogate Method!

Our method “WHAT” is better than the state of the art

- Similar result using 2 to 10 times less evaluations

- Predictions are more stable 



Vivek Nair, Tim Menzies, Norbert Siegmund, Sven Apel. Faster 
Discovery of Faster System Configurations with Spectral 
Learning. Submitted to FSE - 2016
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“Search” in Software Engineering

What is the: [Harman’12]
- best way to structure this system to enhance its maintainability?

- smallest set of test cases that covers all branches?

- fastest configuration of this system to run this benchmark program?
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Software Engineering problems are 

● MultiObjective [Mkaouer’15]
○ The are more than one objective to optimize

● Multi-Modal 
○ There are more than one optimum solution

● Non-Separability
○ The optimum of one of the objectives is not the optimum for the other objective/s.

● High Dimensions
○ Number of dimensions of the search space is large 
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Which optimization algorithms can we use?
Mathematical optimization 

● Based on the property of objective function and constraint function:
- linear programing
- non-linear programing

● Assumes properties like differentiability etc.
 

Grid Search

● Divide dimensions into bins

● Choose one from each bin

● Slow and can miss important optimization opportunities
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Which optimization algorithms can we use?

Evolutionary Algorithms

1. Initial Population (Parent) 

2. While stoppingCriteria is True:

a. Offspring = Reproduction (Recombine + Mutate)

b. Evaluate Fitness (Evaluate)

c. Replace least-fit population with new offspring (Select)

3. Return (Population)

Initialize

Parents

Recombine

MutateSelect

Terminate

Evaluate



Biased towards EA

● Simple implementation

○ Basic EA application can be coded 

up in 50 lines of python

● Distributed computation

○  Algorithms can be parallelized

● Generation of new ideas that 

have not been explored before
EA is most explored technique in
SBSE [Harman’12]



EA is really slow!

EAs require a high number of objective function evaluations

● Evaluation of single instance of software /hardware co-design problem 

can take weeks [Zuluaga’13]

● Test suite generation using EA can take weeks [Harman‘12] 

● Popular EA (NSGA-II) taking 7 days of execution time for Aviation 

Models [Krall’15]
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Surrogate models might be the answer?

● Surrogates

● Motivation
○ Replacement of expensive function, evaluated many times

○ Widely used in Airfoil design, CFD, reservoir planning etc.

○ No known usage in Software Engineering 
18



Surrogate can also be used to inform
Initialize

Parents

Recombine

MutateSelect

Terminate

Evaluate

● Initialization

○ Use only the best candidates evaluated using a 
surrogate [Rasheed’00]
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Surrogate can also be used to inform

Parents

Select

Terminate

Evaluate

● Initialization

○ Use only the best candidates evaluated using a 
surrogate [Rasheed00]

● Recombination + Mutation

○ Create multiple children and use the fittest of 
them all [Loshchilov’10]

○ Create local surrogate and and search locally 
[Abboud’01]

● Evaluate

○ Multiple Surrogates [Zhou’07]

○ WHAT is an evaluate surrogate

Initialize

Recombine

Mutate
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WHAT = Clustering + Sampling

● Phase 1:  Clustering
○ WHERE 

● Phase 2: Sampling
○ Random Sampling - Select any point at random

○ East West Sampling - Find extreme points on the dimension of highest variance

○ Exemplar - The point with minimum performance measure

● Phase 3: Generate Surrogate - CART
○ Samples selected by our sampler is used to train a CART model
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Definition

Request Response
Time = 2100 ms

F1= True

Software 
System

● Real System
○ Features can be either True or False

○ Configuration is a set of features

○ Each configuration has a corresponding 

response time or performance measure

F2= False F3= True

Configuration



Definition

Request Response
Time = 2100 ms

F1= True

Surrogate 
System

● Real System
○ Features can be either True or False

○ Configuration is a set of features

○ Each configuration has a corresponding 

response time or performance measure

● Surrogate System
○ Configuration = independent variable

○ Performance measure = dependent variable 

F2= False F3= True

Independent Variables

Dependent 
Variable



Phase 1: Clustering
● Clustering via WHERE

○ Novel near-linear time spectral learner 
○ Exploits underlying lower dimensionality 

of search space

● In brief:
○ Find a dimension “d” with most variance
○ Project points to “d”
○ Split data at median “d”
○ Recurse
○ Stop when |n| < sqrt(N)
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● Future work:

○ Fast Spectral clustering [Yan’09]

● In brief:

○ Polynomial time operations 

■ An initial k-means pass

■ O(N^2) operations on the centroids 
founds by K-means

■ Final pass: map all points to the 
centroids found in b
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- Number of samples (N) = 64

Algorithm:
• Find a dimension “d” with most 

variance
• Project points to “d”
• Split data at median “d”
• Recurse
• Stop when |n| < sqrt(N) Configuration Space
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Configuration Space

- Number of samples (N) = 64

Algorithm:
• Find a dimension “d” with most 

variance
• Choose point at random (initial)
• Find furthest point (east)
• Find furthest point from east (west)

• Project points to “d”
• Split data at median “d”
• Recurse
• Stop when |n| < sqrt(N)



initial
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Phase 2: Sampling
Choosing representative candidates from clusters
● Random

○ Choose a candidate at random 
○ Number of evaluations/Cluster = 1
○ Point selected/Cluster = 1

● East-West
○ Choose extreme points in dimension of maximum variance
○ Number of evaluations/Cluster = 2
○ Point selected/Cluster = 2

● Exemplar
○ Choose the best candidate from the cluster
○ Number of evaluations/Cluster = n
○ Point selected/Cluster = 1

48
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Phase 3: Generate Surrogate 
● Use the configuration/s sampled from each cluster

● Run the configuration

○ In this work, we performed a table lookup 

● Train a CART decision tree learner using:

○ Configurations (Independent Variable)

○ Performance Measure (Dependent Variable)



Experiments



Experiments
● Datasets Used: 

○ Apache - open-source Web server
○ Berkeley DB C (BDBC) - embedded 

database system written in C
○ Berkeley DB Java (BDBJ) - BDBC in 

Java with SQL support
○ LLVM - a compiler infrastructure 

written in C++
○ SQLite - embedded database system
○ X264 - is a video encoder in C

● Surrogate Used: CART

● Techniques compared against:
○ Siegmund et al. 
○ Guo et al.
○ Sarkar et al.

● Performance Measure:
○ MRE: Mean Relative Error

MRE = |actual - predicted|
actual

x 100

Collecting “Ground Truth” = 26 
days of computation



Techniques compared against
2012 2013 2015

[Sarkar’15][Guo’13][Siegmund’12]



Techniques compared against
2012 2013 2015

[Sarkar’15][Guo’13]

Uses Feature Wise heuristics:
● Find 

○ a pair of configuration 
(C1 and C2)

○ has same features 
except for one (Fi)

● Performance score (PS) of Fi
PS(Fi) = PS(C1) - PS(C2)

● Performance of a new Ci
PS(Ci) = ∑ PS(Fi) ∀ Fi ϵ Ci

[Siegmund’12]



Techniques compared against
2012 2013 2015

[Sarkar’15][Guo’13][Siegmund’12]

Progressive Sampling Approach:

While terminationCriteria() is 
True:

● Random Sampling 
● Samples in step of |F|
● Build a CART tree



Techniques compared against
2012 2013 2015

[Sarkar’15][Guo’13][Siegmund’12]

Uses Feature Frequencies:
● Projective sampling to 

decide number of 
configurations to sample

● Random Sampling 
● Build a CART tree



Research Questions

RQ 1: Can WHAT generate good predictions using only a small number of 

configurations?

RQ 2: Do less data cause larger variances in predicted values?

RQ 3: Can “good” surrogate models (to be used in optimizers) be built using WHAT?

RQ 4: How good is WHAT compared to the state of the art predictors?
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RQ1 + RQ2
RQ1 + RQ2 explore
• if WHAT can generate good predictors with low variance

• how much of data should WHAT reflect upon

Comparison between:
• Baseline (using all the data)

• WHERE + Random 

• WHERE + EAST-West

• WHERE + Exemplar



Design of Experiment
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RQ1 + RQ2: Observations
● Baseline results is the best

○ It uses 100% of data
● Results plateaued after 40%
● WHERE + Exemplar 

○ largest Mean MRE
○ Not Recommended

● WHERE + East-West
○ MRE 3/6 times better/similar 
○ Standard deviation is low
○ Recommended

● WHERE + Random
○ MRE 4/6 times better/similar 
○ Standard deviation is low
○ Recommended



RQ1 + RQ2: Evaluation
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○ Standard deviation is low
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Software Systems
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(When   Training Data = 40%) 

RQ1 + RQ2: Evaluation

Software Systems

Exemplar uses one 
points /cluster but to find 
the exemplar point you 
need to evaluate all 

● WHERE + East-West
○ MRE 3/6 times better/similar 
○ Standard deviation is low
○ Recommended

● WHERE + Random
○ MRE 4/6 times better/similar 
○ Standard deviation is low
○ Recommended

Random Sampling 
evaluates half the 
configuration 
compared to 
EastWest Sampling



RQ 3: Can “good” surrogate models (to be used in optimizers) be built using WHAT?

 
RQ 3 explore 

• if predictors generated using samples from 
WHAT can find faster performance scores      
(eg. Response time)

Optimization Goal
• Minimize the performance score of the system

Comparison between:
• GALE [Krall’15]

• DE [Storn’95]

• NSGA-II [Deb’02]

Configuration 
Space

WHAT

Surrogate 
ModelOptimizer

Fastest Configuration
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Performance Scores

Configuration found by 
optimizers projected onto 
ground truth
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RQ 3: Can “good” surrogate models (to be used in optimizers) be built using WHAT?

 
• Optimization Goal: Minimization

• Optimized configurations 
• within 1% of the fastest configuration
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• Siegmund et al. - FW heuristics
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• Sarkar et al. - Random Sampling + Feature-wise heuristics
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Future Work
● Progressive WHAT

○ WHAT is rigid
○ Has no options of budget
○ Progressive Sampling using WHAT 

● Multi-objective Problems
○ Problem are multi-objective
○ New surrogates required
○ New surrogate model update 

techniques

● Sampling Way
○ Sampling is preferable if evaluation is 

expensive
○ Initial results are competitive with 

other algorithms

● Spectral Grid Search
○ Exploit the underlying dimension 

while generating Grids



RQ 1: Can WHAT generate good predictions using  only a small number of 

configurations?

RQ 2: Do less data cause larger variances in predicted values?

RQ 3: Can “good” surrogate models (to be used in optimizers) be built using WHAT?

RQ 4: How good is WHAT compared to the state of the art predictors?

YES

NO

YES

Comparable

Question and Comments



❏ [Samad’08] A. Samad and K.-Y. Kim, “Multiple surrogate modeling for axial compressor blade shape optimization,” J. Propulsion Power, vol. 
24, no. 2, pp. 302–310, Mar. 2008.

❏ [Zerpa’05] L. E. Zerpa, N. V. Queipo, S. Pintos, and J.-L. Salager, “An optimization methodology of alkaline-surfactant-polymer flooding 
processes using field scale numerical simulation and multiple surrogates,” J. Petroleum Sci. Eng., vol. 47, no. 3–4, pp. 197–208, Jun. 2005.

❏ [Marjavaara’07] D. Marjavaara, S. Lundstr¨om, and W. Shyy, “Hydraulic turbine diffuser shape optimization by multiple surrogate model 
approximations of pareto fronts,” ASME J. Fluids Eng., vol. 129, no. 9, pp. 1228–1240, 2007.

❏ [Sanchez’06] E. Sanchez, S. Pintos, and N. V. Queipo, “Toward an optimal ensemble of kernel-based approximations with engineering 
applications,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2006, pp. 2152–2158.

❏ [Sakata’08] Sakata, S., F. Ashida, and M. Zako. "Microstructural design of composite materials using fixed-grid modeling and noise-resistant 
smoothed Kriging-based approximate optimization." Structural and Multidisciplinary Optimization 36.3 (2008): 273-287.

❏ [Guo’13] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej Wasowski. Variability-aware performance 
prediction: A statistical learning approach. In IEEE/ACM 28th International Conference on Automated Software Engineering, pages 
301–311. IEEE, 2013.

❏ [Bergstra’12] Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." The Journal of Machine Learning 
Research 13.1 (2012): 281-305.

❏ [Loshchilov’10] Loshchilov, Ilya, Marc Schoenauer, and Michèle Sebag. "A mono surrogate for multiobjective optimization." Proceedings of 
the 12th annual conference on Genetic and evolutionary computation. ACM, 2010.

❏ [Abboud’01] Abboud, Schoenauer. Surrogate deterministic mutation: Preliminary results, Artificial Evolution ’01
❏ [Zhou’07] Zhou, Zongzhao, et al. "Combining global and local surrogate models to accelerate evolutionary optimization." Systems, Man, and 

Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 37.1 (2007): 66-76.
❏ [Storn’95] Storn, Rainer, and Kenneth Price. Differential evolution-a simple and efficient adaptive scheme for global optimization over 

continuous spaces. Vol. 3. Berkeley: ICSI, 1995.
❏ [Deb’02] Deb, Kalyanmoy, et al. "A fast and elitist multiobjective genetic algorithm: NSGA-II."Evolutionary Computation, IEEE Transactions 

on6.2 (2002): 182-197.

References


