Frugal: Cheaper Methods for SBSE

Vivek Nair

THE RAISE LAB₁

Why configurations are so important?

- Software systems are configurable
- Configurations are parameters to control the behavior of a system
 - Configurations of <u>Apache:</u>
 - HostNameLookups
 - FollowSimLinks
 -
- Different configurations of system will result in different performance

Why configurations are so important?

- Software systems are configurable
- Configurations are parameters to control the behavior of a system
 - Configurations of <u>Apache:</u>
 - HostNameLookups
 - FollowSimLinks
 -
- Different configurations of system will result in different performance

Example

Conf.	Features									
	x_1	x_2	x_3		x_i			x_N		
1	1	0	1	0	0	0	1	1		
2	0	1	1	1	1	0	0	1		
3	1	0	0	1	0	1	0	0		
4	1	1	0	1	0	1	0	1		
5	1	0	1	1	0	1	1	0		

Find the fastest configuration setting for given a sample program?

Just run it?

Example

Conf.	Features								
	x_1	x_2	x_3		x_i			x_N	
1	1	0	1	0	0	0	1	1	
2	0	1	1	1	1	0	0	1	
3	1	0	0	1	0	1	0	0	
4	1	1	0	1	0	1	0	1	
5	1	0	1	1	0	1	1	0	
•									
,932,160	1	0	1	1	0	1	1	0	

Find the fastest configuration setting for given a sample program?

Just run it?

How about now?

We need a Surrogate!

Surrogate is a cheap version of the actual system

Who endorses Surrogates?

Other Communities

- Aerospace
 - Axial compressor blade shape optimization [Samad08]
 - Hydraulic turbine diffuser shape optimization [Marjavaara07]
- Engineering Design
 - Enhanced oil recovery process [Sanchez06]
 - Design of composite materials [Sakata08]
 - Alkaline-surfactant-polymer flooding processes [Zerpa05]

Software Engineering

No surrogates....

Who endorses Surrogates?

Other Communities

- Aerospace
 - Axial compressor blade shape optimization [Samad08]
 - Hydraulic turbine diffuser shape optimization [Marjavaara07]
- Engineering Design
 - Enhanced oil recovery process [Sanchez06]
 - Design of composite materials [Sakata08]
 - Alkaline-surfactant-polymer flooding processes [Zerpa05]

Software Engineering

No surrogates....

Most Similar But **NOT Surrogates**:

- Heuristic method to predict response times [Siegmund'12]
- Random Sampling to build a prediction model [Guo'13, Sarkar'15]

Our Surrogate Method!

Our method "WHAT" is better than the state of the art

- Similar result using 2 to 10 times less evaluations
- Predictions are more stable

Paper Submitted

<u>Vivek Nair</u>, Tim Menzies, Norbert Siegmund, Sven Apel. Faster Discovery of Faster System Configurations with Spectral Learning. Submitted to FSE - 2016

BACKGROUND

"Search" in Software Engineering

What is the: [Harman'12]

- best way to structure this system to enhance its maintainability?
- smallest set of test cases that covers all branches?
- fastest configuration of this system to run this benchmark program?

Software Engineering problems are

- MultiObjective [Mkaouer'15]
 - The are more than one objective to optimize
- Multi-Modal
 - There are more than one optimum solution
- Non-Separability
 - The optimum of one of the objectives is not the optimum for the other objective/s.
- High Dimensions
 - Number of dimensions of the search space is large

Which optimization algorithms can we use?

Mathematical optimization

- Based on the property of objective function and constraint function:
 - linear programing
 - non-linear programing
- Assumes properties like differentiability etc.

Grid Search

- Divide dimensions into bins
- Choose one from each bin
- Slow and can miss important optimization opportunities

Which optimization algorithms can we use?

Biased towards EA

- Simple implementation
 - Basic EA application can be coded up in 50 lines of python
- Distributed computation
 - Algorithms can be parallelized
- Generation of new ideas that have not been explored before

EA is most explored technique in SBSE [Harman'12]

EA is really slow!

EAs require a high number of objective function evaluations

- Evaluation of single instance of software /hardware co-design problem can *take weeks* [Zuluaga'13]
- Test suite generation using EA can take weeks [Harman'12]
- Popular EA (NSGA-II) *taking 7 days* of execution time for Aviation Models [Krall'15]

Surrogate models might be the answer?

• Surrogates

- Motivation
 - Replacement of expensive function, evaluated many times
 - Widely used in Airfoil design, CFD, reservoir planning etc.
 - No known usage in Software Engineering

Surrogate can also be used to inform

- Initialization
 - Use only the best candidates evaluated using a surrogate [Rasheed'00]

Surrogate can also be used to inform

- Initialization
 - Use only the best candidates evaluated using a surrogate [Rasheed'00]
- Recombination + Mutation
 - Create multiple children and use the fittest of them all [Loshchilov'10]
 - Create local surrogate and and search locally [Abboud'01]

Surrogate can also be used to inform

- Initialization
 - Use only the best candidates evaluated using a surrogate [Rasheed00]
- Recombination + Mutation
 - Create multiple children and use the fittest of them all [Loshchilov'10]
 - Create local surrogate and and search locally [Abboud'01]
- Evaluate
 - Multiple Surrogates [Zhou'07]
 - WHAT is an evaluate surrogate

To Summarize

Space

To Summarize

To Summarize

APPROACH

WHAT = Clustering + Sampling

- Phase 1: Clustering
 - WHERE
- Phase 2: Sampling
 - Random Sampling Select any point at random
 - East West Sampling Find extreme points on the dimension of highest variance
 - Exemplar The point with minimum performance measure
- Phase 3: Generate Surrogate CART
 - Samples selected by our sampler is used to train a CART model

Definition

- Real System
 - Features can be either True or False
 - Configuration is a set of features
 - Each configuration has a corresponding response time or <u>performance measure</u>

Definition

- Real System
 - Features can be either True or False
 - Configuration is a set of features
 - Each configuration has a corresponding response time or <u>performance measure</u>
- Surrogate System
 - Configuration = independent variable
 - Performance measure = dependent variable

Phase 1: Clustering

• Clustering via WHERE

- Novel near-linear time spectral learner
- Exploits underlying lower dimensionality of search space

• In brief:

- Find a dimension "d" with most variance
- Project points to "d"
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)

Future work:

Fast Spectral clustering [Yan'09]

• In brief:

- Polynomial time operations
 - An initial k-means pass
 - O(N²) operations on the centroids founds by K-means
 - Final pass: map all points to the centroids found in b

- Number of samples (N) = 64

Algorithm:

- Find a dimension "d" with most variance
- Project points to "d"
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)

Configuration Space

- Number of samples (N) = 64

Algorithm:

- Find a dimension "d" with most variance
 - Choose point at random (initial)
 - Find furthest point (east)
 - Find furthest point from east (west)
- Project points to "d"
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)

Configuration Space

- Number of samples (N) = 64

Algorithm:

- Find a dimension "d" with most variance
 - Choose point at random (initial)
 - Find furthest point (east)
 - Find furthest point from east (west)
- Project points to "d"
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)

Configuration Space

- Number of samples (N) = 64

Algorithm:

- Find a dimension "d" with most variance
 - Choose point at random (initial)
 - Find furthest point (east)
 - Find furthest point from east (west)
- Project points to "d"
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)

- Number of samples (N) = 64

Algorithm:

- Find a dimension "d" with most variance
 - Choose point at random (initial)
 - Find furthest point (east)
 - Find furthest point from east (west)
- Project points to "d"
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)

- Number of samples = 64

Algorithm:

- Find a dimension "d" with most variance
 - Choose point at random (initial)
 - Find furthest point (east)
 - Find furthest point from east (west)
- Project points to "d"
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)

- Number of samples (N) = 64

Algorithm:

- Find a dimension "d" with most variance
 - Choose point at random (initial)
 - Find furthest point (east)
 - Find furthest point from east (west)
- Project points to "d"
 - For all points
 - Choose a point (candidate)
 - Calculate position on d dimension
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)

- Number of samples (N) = 64

Algorithm:

- Find a dimension "d" with most variance
 - Choose point at random (initial)
 - Find furthest point (east)
 - Find furthest point from east (west)
- Project points to "d"
 - For all points
 - Choose a point (candidate)
 - Calculate position on d dimension
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)

- Number of samples (N) = 64

Algorithm:

- Find a dimension "d" with most variance
 - Choose point at random (initial)
 - Find furthest point (east)
 - Find furthest point from east (west)
- Project points to "d"
 - For all points
 - Choose a point (candidate)
 - Calculate position on d dimension
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)

- Number of samples (N) = 64

Algorithm:

- Find a dimension "d" with most variance
 - Choose point at random (initial)
 - Find furthest point (east)
 - Find furthest point from east (west)
- Project points to "d"
 - For all points
 - Choose a point (candidate)
 - Calculate position on d dimension
- Split data at median "d"
- Recurse
- Stop when |n| < sqrt(N)

- Number of samples (N) = 64

Algorithm:

- Find a dimension "d" with most variance
 - Choose point at random (initial)
 - Find furthest point (east)
 - Find furthest point from east (west)
- Project points to "d"
 - For all points
 - Choose a point (candidate)
 - Calculate position on d dimension
- Split data at median of "d"
- Recurse
- Stop when |n| < sqrt(N)

- Number of samples (N) = 64

Algorithm:

- Find a dimension "d" with most variance
 - Choose point at random (initial)
 - Find furthest point (east)
 - Find furthest point from east (west)
- Project points to "d"
 - For all points
 - Choose a point (candidate)
 - Calculate position on d dimension
- Split data at median of "d"
- Recurse
- Stop when |n| < sqrt(N)

- Number of samples (N) = 64

Algorithm:

- Find a dimension "d" with most variance
 - Choose point at random (initial)
 - Find furthest point (east)
 - Find furthest point from east (west)
- Project points to "d"
 - For all points
 - Choose a point (candidate)
 - Calculate position on d dimension
- Split data at median of "d"
- Recurse
- Stop when |n| < sqrt(N)

- Number of samples (N) = 64

Algorithm:

- Find a dimension "d" with most variance
 - Choose point at random (initial)
 - Find furthest point (east)
 - Find furthest point from east (west)
- Project points to "d"
 - For all points
 - Choose a point (candidate)
 - Calculate position on d dimension
- Split data at median of "d"
- Recurse
- Stop when |n| < sqrt(N)

Phase 2: Sampling

Choosing representative candidates from clusters

- Random
 - Choose a candidate at random
 - Number of evaluations/Cluster = 1
 - Point selected/Cluster = 1
- East-West
 - Choose extreme points in dimension of maximum variance
 - Number of evaluations/Cluster = 2
 - Point selected/Cluster = 2
- Exemplar
 - Choose the best candidate from the cluster
 - Number of evaluations/Cluster = n
 - Point selected/Cluster = 1

Phase 3: Generate Surrogate

- Use the configuration/s sampled from each cluster
- Run the configuration
 - In this work, we performed a table lookup
- Train a CART decision tree learner using:
 - Configurations (Independent Variable)
 - Performance Measure (Dependent Variable)

Experiments

Collecting "Ground Truth" = 26 days of computation

Experiments

• Datasets Used:

- Apache open-source Web server
- Berkeley DB C (**BDBC**) embedded database system written in C
- Berkeley DB Java (BDBJ) BDBC in Java with SQL support
- LLVM a compiler infrastructure written in C++
- SQLite *embedded database system*
- X264 is a video encoder in C
- Surrogate Used: CART

- Techniques compared against:
 - Siegmund et al.
 - Guo et al.
 - Sarkar et al.

• Performance Measure:

$$MRE = \frac{|actual - predicted|}{actual} \times 100$$

Uses Feature Wise heuristics:

- Find
 - a pair of configuration (C1 and C2)
 - has same features except for one (Fi)
- Performance score (PS) of Fi PS(Fi) = PS(C1) - PS(C2)
- Performance of a new C_i PS(Ci) = $\sum PS(F_i) \forall F_i \in C_i$

Progressive Sampling Approach:

While terminationCriteria() is True:

- Random Sampling
- Samples in step of |F|
- Build a CART tree

Uses Feature Frequencies:

- Projective sampling to decide number of configurations to sample
- Random Sampling
- Build a CART tree

Research Questions

RQ 1: Can WHAT generate good predictions using only a small number of configurations?

RQ 2: Do less data cause larger variances in predicted values?

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT?

RQ 4: How good is WHAT compared to the state of the art predictors?

RQ1 + RQ2

RQ1 + RQ2 explore

- if WHAT can generate good predictors with low variance
- how much of data should WHAT reflect upon

Comparison between:

- Baseline (using all the data)
- WHERE + Random
- WHERE + EAST-West
- WHERE + Exemplar

Design of Experiment

Data (100)

	Data (100)
Train (10)	Test (90)

Design of Experiment

Data (100)

Design of Experiment

:

Random						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	?	?	?	?	?	?
Standard Deviation	?	?	?	?	?	?

East-West						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	?	?	?	?	?	?
Standard Deviation	?	?	?	?	?	?

Exemplar						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	?	?	?	?	?	?
Standard Deviation	?	?	?	?	?	?

Random		- 22	20.			501
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	~	?	?	?	?	?
Standard Deviation	?	?	?	?	?	?

East-West						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	×	?	?	?	?	?
Standard Deviation	?	?	?	?	?	?

Exemplar						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	×	?	?	?	?	?
Standard Deviation	?	?	?	?	?	?

Random						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	~	×	~	~	×	~
Standard Deviation	?	?	?	?	?	?

East-West						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	×	~	×	×	~	~
Standard Deviation	?	?	?	?	?	?

Exemplar						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	×	×	×	×	×	×
Standard Deviation	?	?	?	?	?	?

Random						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	~	×	~	~	×	~
Standard Deviation	?	?	?	?	?	?

East-West						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	×	~	×	×	~	~
Standard Deviation	?	?	?	?	?	?

Exemplar						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	×	×	×	×	×	×
Standard Deviation	?	?	?	?	?	?

Random						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	~	×	~	~	×	~
Standard Deviation	?	×	?	?	?	?

East-West	2 33					
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	×	~	×	×	~	V
Standard Deviation	?	~	?	?	?	?

Exemplar	20 20					
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	×	×	×	×	×	×
Standard Deviation	?	~	?	?	?	?

Random						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	~	×	~	~	×	~
Standard Deviation	?	×	?	?	v	?

East-West						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	×	~	×	×	~	~
Standard Deviation	?	~	?	?	~	?

Exemplar						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	×	×	×	×	×	×
Standard Deviation	?	~	?	?	~	?

Random						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	~	×	V	~	×	V
Standard Deviation	~	×	~	~	~	v

East-West	1					
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	×	~	×	×	~	~
Standard Deviation	×	~	×	~	~	~

Exemplar						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	×	×	×	×	×	×
Standard Deviation	×	~	×	×	~	~

RQ1 + RQ2: Observations

- Baseline results is the best
 - \circ It uses 100% of data
- Results plateaued after **40%**
- WHERE + Exemplar
 - largest Mean MRE
 - Not Recommended
- WHERE + East-West
 - MRE 3/6 times better/similar
 - Standard deviation is low
 - Recommended
- WHERE + Random
 - MRE 4/6 times better/similar
 - Standard deviation is low
 - Recommended

Random						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	~	×	~	~	×	V
Standard Deviation	~	×	~	~	~	~

East-West						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	×	~	×	×	~	~
Standard Deviation	×	~	×	~	~	v

Exemplar						
Software System	Apache	BDBC	BDBJ	LLVM	SQLite	X264
Mean MRE	×	×	×	×	×	×
Standard Deviation	×	~	×	×	~	~

• WHERE + East-West

- MRE 3/6 times better/similar
- Standard deviation is low
- \circ Recommended
- WHERE + Random
 - MRE 4/6 times better/similar
 - Standard deviation is low
 - Recommended

Software Systems

RQ 3 explore

 if predictors generated using samples from WHAT can find faster performance scores (eg. Response time)

Optimization Goal

• Minimize the performance score of the system

Comparison between:

- GALE [Krall'15]
- DE [Storn'95]
- NSGA-II [Deb'02]

Instances sorted based on Performance Scores

Instances sorted based on Performance Scores

Instances sorted based on Performance Scores

Optimization Goal: Minimization

Optimization Goal: Minimization

- Optimized configurations
 - within 1% of the fastest configuration

- If WHAT is better than state-of-the-art techniques
 - Siegmund et al. FW heuristics
 - Guo et al. Progressive Sampling
 - Sarkar et al. Random Sampling + Feature-wise heuristics

- If WHAT is better than state-of-the-art techniques
 - Siegmund et al. FW heuristics
 - Guo et al. Progressive Sampling
 - Sarkar et al. Random Sampling + Feature-wise heuristics

- If WHAT is better than state-of-the-art techniques
 - Siegmund et al. FW heuristics
 - Guo et al. Progressive Sampling
 - Sarkar et al. Random Sampling + Feature-wise heuristics

- If WHAT is better than state-of-the-art techniques
 - Siegmund et al. FW heuristics
 - Guo et al. Progressive Sampling
 - Sarkar et al. Random Sampling + Feature-wise heuristics

- If WHAT is better than state-of-the-art techniques
 - Siegmund et al. FW heuristics
 - Guo et al. Progressive Sampling
 - Sarkar et al. Random Sampling + Feature-wise heuristics

RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Sarkar'15] [Siegmund'12] [Guo'13] Sarkar Siegmund Guo (2N) WHAT Guo (PW) 102 10² 10 Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10^{1} 10¹ 101 10⁰ 100 10-1 BDBC MVJJ SQLite X264 Apache BDBC MVJJ SQLite Apache BDBC **MVJJ** Apache BDBJ BDBJ X264 BDBJ SQLite X264

RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Sarkar'15] [Guo'13] [Siegmund'12] Sarkar Siegmund Guo (2N) WHAT Guo (PW) 102 10² 10 Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10^{1} 10¹ 101 10⁰ 10-1 100 BDBC LLVM SQLite X264 BDBC MVJJ SQLite BDBC SQLite Apache BDBJ Apache BDBJ X264 Apache BDBJ LLVM X264

2015 2012 2013 [Sarkar'15] [Siegmund'12] [Guo'13] Siegmund Sarkar WHAT Guo (2N) Guo (PW) 102 104 102 Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10^{1} 10¹ 10¹ 10⁰ 10⁰ 10 10⁰ Apache BDBC BDBJ MVJJ SQLite X264 Apache BDBC BDBJ **MVJJ** SQLite X264 Apache BDBC BDBJ MVJJ SQLite X264

RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Sarkar'15] [Siegmund'12] [Guo'13] Sarkar Guo (PW) WHAT Siegmund Guo (2N) 10² 10² Mean(%) Fault Rate Measurement (%) wrt Config Standard Deviation (%) Fault Rate 10¹ 10^{1} 10¹ 10⁰ 10^{0} 10 10 BDBC. **SQLite** Apache BDBC MVJJ **SQLite** X264 BDBC. BDBJ LLVM SQLite Apache BDBJ LLVM X264 BDBJ Apache X264

RQ 4: How good is WHAT compared to the state of the art predictors? 2015 2012 2013 [Sarkar'15] [Siegmund'12] [Guo'13] Sarkar WHAT Guo (PW) Siegmund Guo (2N) 10^{2} 10² 104 Mean(%) Fault Rate Standard Deviation (%) Fault Rate Measurement (%) wrt Config 10¹ 101 10¹ 10⁰ 10 10 10 BDBC-BDBC. SQLite BDBC MVJJ SQLite X264 BDBJ LLVM SQLite Apache BDBJ LLVM X264 Apache BDBJ pache X264

RQ 1: Can WHAT generate good predictions using only a small number of configurations?

RQ 2: Do less data cause larger variances in predicted values?

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT?

RQ 1: Can WHAT generate good predictions using only a small number of configurations?

RQ 2: Do less data cause larger variances in predicted values?

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT?

RQ 4: How good is WHAT compared to the state of the art predictors?

YES

RQ 1: Can WHAT generate good predictions using only a small number of configurations?

RQ 2: Do less data cause larger variances in predicted values?

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT?

RQ 4: How good is WHAT compared to the state of the art predictors?

YES

NO

RQ 1: Can WHAT generate good predictions using only a small number of **YES** configurations?

RQ 2: Do less data cause larger variances in predicted values?

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT? YES

RQ 4: How good is WHAT compared to the state of the art predictors?

NO

RQ 1: Can WHAT generate good predictions using only a small number of **YES** configurations?

RQ 2: Do less data cause larger variances in predicted values?

RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT? YES

RQ 4: How good is WHAT compared to the state of the art predictors? Comparable

NO

Future Work

Future Work

• Progressive WHAT

- WHAT is rigid
- Has no options of budget
- Progressive Sampling using WHAT
- Multi-objective Problems
 - Problem are multi-objective
 - New surrogates required
 - New surrogate model update techniques

- Sampling Way
 - Sampling is preferable if evaluation is expensive
 - Initial results are competitive with other algorithms
- Spectral Grid Search
 - Exploit the underlying dimension while generating Grids

RQ 1: Can WHAT generate good predictions using only a small number of configurations?

- RQ 2: Do less data cause larger variances in predicted values?
- RQ 3: Can "good" surrogate models (to be used in optimizers) be built using WHAT? YES
- RQ 4: How good is WHAT compared to the state of the art predictors?

Comparable

YES

NO

Question and Comments

References

- [Samad'08] A. Samad and K.-Y. Kim, "Multiple surrogate modeling for axial compressor blade shape optimization," J. Propulsion Power, vol. 24, no. 2, pp. 302–310, Mar. 2008.
- [Zerpa'05] L. E. Zerpa, N. V. Queipo, S. Pintos, and J.-L. Salager, "An optimization methodology of alkaline-surfactant-polymer flooding processes using field scale numerical simulation and multiple surrogates," J. Petroleum Sci. Eng., vol. 47, no. 3–4, pp. 197–208, Jun. 2005.
- [Marjavaara'07] D. Marjavaara, S. Lundström, and W. Shyy, "Hydraulic turbine diffuser shape optimization by multiple surrogate model approximations of pareto fronts," ASME J. Fluids Eng., vol. 129, no. 9, pp. 1228–1240, 2007.
- [Sanchez'06] E. Sanchez, S. Pintos, and N. V. Queipo, "Toward an optimal ensemble of kernel-based approximations with engineering applications," in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2006, pp. 2152–2158.
- [Sakata'08] Sakata, S., F. Ashida, and M. Zako. "Microstructural design of composite materials using fixed-grid modeling and noise-resistant smoothed Kriging-based approximate optimization." *Structural and Multidisciplinary Optimization* 36.3 (2008): 273-287.
- Guo'13] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej Wasowski. Variability-aware performance prediction: A statistical learning approach. In IEEE/ACM 28th International Conference on Automated Software Engineering, pages 301–311. IEEE, 2013.
- [Bergstra'12] Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." The Journal of Machine Learning Research 13.1 (2012): 281-305.
- [Loshchilov'10] Loshchilov, Ilya, Marc Schoenauer, and Michèle Sebag. "A mono surrogate for multiobjective optimization." Proceedings of the 12th annual conference on Genetic and evolutionary computation. ACM, 2010.
- [Abboud'01] Abboud, Schoenauer. Surrogate deterministic mutation: Preliminary results, Artificial Evolution '01
- [Zhou'07] Zhou, Zongzhao, et al. "Combining global and local surrogate models to accelerate evolutionary optimization." Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 37.1 (2007): 66-76.
- [Storn'95] Storn, Rainer, and Kenneth Price. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Vol. 3. Berkeley: ICSI, 1995.
- [Deb'02] Deb, Kalyanmoy, et al. "A fast and elitist multiobjective genetic algorithm: NSGA-II." Evolutionary Computation, IEEE Transactions on6.2 (2002): 182-197.