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Configurable Systems and Variability

Configuration options

t 2k_480p24.y4m M trailer_480p24.x264

Non-functional behavior: response time, throughput, etc.

Objective: Find (near) optimal configuration of a
system with minimal effort
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Performance Optimization is Necessary!

System: Apache Storm Performance:  Throughput
Workload: Word Count # Configurations: 6
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Best configuration is 480 times better than Worst configuration
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Performance Optimization is getting m
more Complex!
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200 new configuration options 250 new configuration options
added to Apache HTTP server added to MySQL between 2012
between 2010 and 2014 and 2016

[1] Xu et. al. 2015. Hey, you have given me too many knobs!: understanding and dealing with over-designed configuration in system software.FSE 2015
[2] Van Aken, Dana, et al. "Automatic Database Management System Tuning Through Large-scale Machine Learning." International Conference on Management of Data. ACM, 2017.

NC STATE UNIVERSITY tiny.cc/badLearnerPPT




Performance Optimization is required
since Default Configuration is Bad!

Default MySQL configuration in 2016 assumes
@) Necessary that machine has only 160 MB of RAMX!

Rule-of-thumb settings for WordCount (in
Hadoop) gave one of its worst execution

times!?

[1] Van Aken, Dana, et al. "Automatic Database Management System Tuning Through Large-scale Machine Learning." International Conference on Management of Data. ACM, 2017.
[2] Herodotou, Herodotos, et al. "Starfish: A Self-tuning System for Big Data Analytics." CIDR
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Performance Optimization can be
Expensive!

» Evaluation of single instance of their
hardware/software co-design problem can take
weeks!'!

0 Necessary Rolling Sort use-case required 21 days, within a
0 Complex total experimental time of about 2.5 months!?]

0 Default is bad

Test suite generation using Evolutionary Algorithm
can take weeks®!

* Image recognition workload and speech
recognition workload, jobs ran for many hours or
dayst*

[1] Zuluaga, Marcela, et al. "Active learning for multi-objective optimization." International Conference on Machine Learning. 2013.

[2] Jamshidi, Pooyan, and Giuliano Casale. "An uncertainty-aware approach to optimal configuration of stream processing systems."MASCOTS-2016
[3] Wang, Tiantian, et al. "Searching for better configurations: a rigorous approach to clone evaluation." FSE-2013

[4] Venkataraman, Shivaram, et al. "Ernest: Efficient Performance Prediction for Large-Scale Advanced Analytics." NSDI. 2016.
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Existing Solutions
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[Siegmund’12] Siegmund, Norbert, et al. "Predicting performance via automated feature-interaction detection." ICSE- 2012
[Guo’13] Guo, Jienmei, et al. “Variability-aware performance prediction: A statistical learning approach”. ASE-2013

[Sarkar'15] Sarkar, Atri, et al. "Cost-efficient sampling for performance prediction of configurable systems (t)." ASE-2015

[Nair'17] Nair, Vivek, et al. "Faster discovery of faster system configurations with spectral learning." ASE Journal-2017 - to appear.
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[Siegmund’12] Siegmund, Norbert, et al. "Predicting performance via automated feature-interaction detection." ICSE- 2012
[Guo’13] Guo, Jienmei, et al. “Variability-aware performance prediction: A statistical learning approach”. ASE-2013

[Sarkar’15] Sarkar, Atri, et al. "Cost-efficient sampling for performance prediction of configurable systems (t)." ASE-2015

[Nair'17] Nair, Vivek, et al. "Faster discovery of faster system configurations with spectral learning." ASE Journal-2017 - to appear.
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Existing Solutions
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Accurately Model the configuration space

1. Divide the configuration space into
fraining and testing sets;

o @)
@)
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Configuration Space

[Siegmund’12] Siegmund, Norbert, et al. "Predicting performance via automated feature-interaction detection." ICSE- 2012
[Guo’13] Guo, Jienmei, et al. “Variability-aware performance prediction: A statistical learning approach”. ASE-2013

[Sarkar’15] Sarkar, Atri, et al. "Cost-efficient sampling for performance prediction of configurable systems (t)." ASE-2015

[Nair'17] Nair, Vivek, et al. "Faster discovery of faster system configurations with spectral learning." ASE Journal-2017 - to appear.
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Accurately Model the configuration space

1. Divide the configuration space into

@ fraining and testing sets;
o @) 2. Measure all the configurations in the
@) testing set;
Train o @) o —_ 3. lteratively sampling configuration from
O 'e) fraining set to build a model and test
MHl° o o O the model against testing set;
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Test o @ @) O |€4+—

Configuration Space
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Existing Solutions

2012 2013 2015 2017
O @ @ @— @ —
[Siegmund’12] [Guo’13] [Sarkar'15] [Nair'17]

Accurately Model the configuration space

1. Divide the configuration space into

@ fraining and testing sets;
o @) 2. Measure all the configurations in the
@) testing set;

Train o @) o —_ 3. lteratively sampling configuration from

O 'e) fraining set to build a model and test

MHl° o o O the model against testing set;
o O © 5 \@ 4.  Exit when an accurate model is built
Test o @ o o I (e.g., error =0.1)

Configuration Space

[Siegmund’12] Siegmund, Norbert, et al. "Predicting performance via automated feature-interaction detection." ICSE- 2012
[Guo’13] Guo, Jienmei, et al. “Variability-aware performance prediction: A statistical learning approach”. ASE-2013

[Sarkar’15] Sarkar, Atri, et al. "Cost-efficient sampling for performance prediction of configurable systems (t)." ASE-2015

[Nair'17] Nair, Vivek, et al. "Faster discovery of faster system configurations with spectral learning." ASE Journal-2017 - to appear.
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Limitation of Existing Solutions

Assumes, an Accurate Model of a software system can be built
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Limitation of Existing Solutions

Assumes, an Accurate Model of a software system can be built
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Limitation of Existing Solutions

Assumes, an Accurate Model of a software system can be built
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Core Insight

Rank-preserving model rather than highly accurate model
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Rank Preserving Model
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Best Configuration obtained using actual and the predicted values is the same
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Rank Preserving Model
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Rank Preserving Model
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Rank Preserving Model
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Rank Preserving Model

1. Divide the configuration space into

@ fraining and testing sets;
o @) 2. Measure all the configurations in the
@) testing set;
Train o @) o —_ 3. lteratively sampling configuration from
O 'e) fraining set to build a model and test

@ @) o O o @) the model against testing set;
o e \
@) @) 4

Configuration Space

Test
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Rank Preserving Model

1. Divide the configuration space into
@ fraining and testing sets;

2. Measure all the configurations in the
@) testing set;
—_ 3. lteratively sampling configuration from
'e) fraining set to build a model and test
MHl° o o O the model against testing set;

@)

O o @ 4. Calculate accuracy [1 model should get
progressively more accurate

Train O
O

Test

Configuration Space

1
accuracy = o ‘rank(yi) — rank(f(x;))

=1
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Rank Preserving Model

1. Divide the configuration space into
@ fraining and testing sets;

2. Measure all the configurations in the
@) testing set;
—_ 3. lteratively sampling configuration from
'e) fraining set to build a model and test
MHl° o o O the model against testing set;

@)

O '®) 4) @ 4. CalculateT accuracy [ model should get
progressively more accurate

Train

Test 5. Exit when a model built does not

O
@ improve (accuracy plateau
Configuration Space prove ( yp )

1
accuracy = o ‘rank(yi) — rank(f(x;))

=1
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Evaluation
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Baselines

 Progressive Sampling!']
— Sequentially (randomly) sample configuration to build a
decision tree till threshold accuracy is reached

* Projective Sampling!?!
— Using minimal set of initial sample configurations to
project the sampling cost based on a threshold
accuracy

[1] Guo, Jianmei, et al. “Variability-aware performance prediction: A statistical learning approach”. ASE-2013
[2] Sarkar, Atri, et al. "Cost-efficient sampling for performance prediction of configurable systems (t)." ASE-2015
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Research Questions

RQ1
- Can inaccurate models accurately rank configurations?

RQ2
- How expensive is a rank-based method?
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Subject Software Systems

Video Encoder

Databases ,ORACLE@ @ Grid benchmark

BERKELEY DB

Utility | GNU wget Apache

HTTP SERVER

@ APACHE
Compression STORM Data processing

Numerical

Web server
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Subject Software Systems

Pooyan Jamshidi ORACLE
wn ] ; ' BERKELEY DB

Sven Apel

Apache

HTTP SERVER
APACHE

Norbert Siegmund

Combined effort = 6 computational months
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Experimental Settings

Data (100)
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Experimental Settings
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Training Pool (40)

Prune Pool (20)

Testing Pool (40)
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Results
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RQ1: Can inaccurate models accurately rank
configurations?

14 Rank-based 14 Progressive Sampling
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RQ1: Can inaccurate models accurately rank
configurations?

14 Rank-based 14 Progressive Sampling
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The lower the better

RD = |rank(actualypiimqr) — rank(predicted,ptimar)
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RQ1: Can inaccurate models accurately rank

configurations?
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RQ1: Can inaccurate models accurately rank

configurations?
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RQ1: Can inaccurate models accurately rank
configurations?
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RQ1: Can inaccurate models accurately rank
configurations?
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RQ1: Can inaccurate models accurately rank
configurations?
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RQ1: Can inaccurate models accurately rank
configurations?

14 Rank-based 14 Progressive Sampling
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Yes, a rank preserving model can be useful in finding (near)
optimal configurations!
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RQ2: How expensive is a rank-based
approach?
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RQ2: How expensive is a rank-based
approach?
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RQ2: How expensive is a rank-based
approach?
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RQ2: How expensive is a rank-based
approach?
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Yes, a rank-based approach requires fewer
measurements!
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Conclusion

e Rank-based method
— a highly accurate model is not required for performance
optimization;
— performance optimization using predicted values
correlated to actual values saves resources

e Future Work & Limitation
— Relies heavily on testing pool (20%)
— Bayesian based sequential sampling to reduce cost

NC STATE UNIVERSITY tiny.cc/badLearnerPPT



NC STATE UNIVERSITY

E vivekaxl@gmail.com

0 @vivekax|
0 vivekaxl.com

Expected Graduation: May 2018
Data Science, Performance Optimization,
Evolutionary Algorithms

Bauhaus-
Universitat

Weimar

NC STATE UNIVERSITY

¥

Rank-preserving models
rather than
highly accurate models!

UNIVERSITAT
//% PASSAU

tiny.cc/badLearnerPPT



