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Performance Optimization is Necessary!



Performance Optimization is getting 
more Complex!

[1] Xu et. al. 2015. Hey, you have given me too many knobs!: understanding and dealing with over-designed configuration in system software.FSE 2015
[2] Van Aken, Dana, et al. "Automatic Database Management System Tuning Through Large-scale Machine Learning." International Conference on Management of Data. ACM, 2017.

● Necessary



Performance Optimization is required 
since Default Configuration is Bad!

[1] Van Aken, Dana, et al. "Automatic Database Management System Tuning Through Large-scale Machine Learning." International Conference on Management of Data. ACM, 2017.
[2] Herodotou, Herodotos, et al. "Starfish: A Self-tuning System for Big Data Analytics." CIDR
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● Complex



Performance Optimization can be 
Expensive!

• Evaluation of single instance of their 
hardware/software co-design problem can take 
weeks[1]

• Rolling Sort use-case required 21 days, within a 
total experimental time of about 2.5 months[2]

• Test suite generation using Evolutionary Algorithm 
can take weeks[3]

• Image recognition workload and speech 
recognition workload, jobs ran for many hours or 
days[4]

[1] Zuluaga, Marcela, et al. "Active learning for multi-objective optimization." International Conference on Machine Learning. 2013.
[2] Jamshidi, Pooyan, and Giuliano Casale. "An uncertainty-aware approach to optimal configuration of stream processing systems."MASCOTS-2016
[3] Wang, Tiantian, et al. "Searching for better configurations: a rigorous approach to clone evaluation." FSE-2013
[4] Venkataraman, Shivaram, et al. "Ernest: Efficient Performance Prediction for Large-Scale Advanced Analytics." NSDI. 2016.

● Necessary

● Complex

● Default is bad



Existing Solutions

2012 2013 2015

[Sarkar’15][Guo’13][Siegmund’12]

2017

[Nair’17]

[Siegmund’12] Siegmund, Norbert, et al. "Predicting performance via automated feature-interaction detection." ICSE- 2012
[Guo’13] Guo, Jienmei, et al. “Variability-aware performance prediction: A statistical learning approach”. ASE-2013
[Sarkar’15] Sarkar, Atri, et al. "Cost-efficient sampling for performance prediction of configurable systems (t)." ASE-2015
[Nair’17] Nair, Vivek, et al. "Faster discovery of faster system configurations with spectral learning." ASE Journal-2017 - to appear.
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1. Divide the configuration space into 
training and testing sets;

2. Measure all the configurations in the 
testing set;

3. Iteratively sampling configuration from 
training set to build a model and test 
the model against testing set;

4. Exit when an accurate model is built 
(e.g., error = 0.1) 
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Rank Preserving Model

Configuration Space

1

1. Divide the configuration space into 
training and testing sets;

2. Measure all the configurations in the 
testing set;

3. Iteratively sampling configuration from 
training set to build a model and test 
the model against testing set;

4. Calculate accuracy � model should get 
progressively more accurate 

5. Exit when a model built does not 
improve (accuracy plateau)

Train

Test
2

3
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Evaluation



Baselines

• Progressive Sampling[1]

– Sequentially (randomly) sample configuration to build a 
decision tree till threshold accuracy is reached

• Projective Sampling[2]

– Using minimal set of initial sample configurations to 
project the sampling cost based on a threshold 
accuracy

[1] Guo, Jianmei, et al. “Variability-aware performance prediction: A statistical learning approach”. ASE-2013
[2] Sarkar, Atri, et al. "Cost-efficient sampling for performance prediction of configurable systems (t)." ASE-2015



Research Questions

RQ1
- Can inaccurate models accurately rank configurations?

RQ2
- How expensive is a rank-based method?
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Subject Software Systems

Pooyan Jamshidi

Norbert Siegmund

Sven Apel

Combined effort = 6 computational months
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RD = |1 - 6| 
      = 5



RQ1: Can inaccurate models accurately rank 
configurations?



RQ1: Can inaccurate models accurately rank 
configurations?



RQ1: Can inaccurate models accurately rank 
configurations?

8/1535



RQ1: Can inaccurate models accurately rank 
configurations?



RQ2: How expensive is a rank-based 
approach?



RQ2: How expensive is a rank-based 
approach?

The lower the better



RQ2: How expensive is a rank-based 
approach?



RQ2: How expensive is a rank-based 
approach?



Conclusion




