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Future Work: When will Flash win?

® Flash can reduce the cost of performance optimization.

® Flash can be adapted to solve multi-objective performance optimization.



Statement of Thesis

Effective performance optimization of configurable
software systems only requires
approximate, cheap and easy to build models.
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What?

Find (near) optimal configuration of a software system
while minimizing measurements
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Why is it important?



Why is it important?

System: Apache Storm Performance: Throughput

Workload: Word Count #tConfiguration options: 6
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Why is it important?

200 new configuration options
added to Apache HTTP server Necessary
between 2010 and 2014l

Complex

Number of parameters

1/1998 1/2002 1/2006 1/2010 1/2014
Release time

600
%, |\ L
s | p— Pgsst;es ___________ _
z400r T
< -
g 200 | 250 new configuration options added
= to MySQL between 2012 and 2016/
E R

3500 2004 2008 2012 2016
Release date

[1] Xu et. al.; Hey, you have given me too many knobs!: understanding and dealing with over-designed configuration in system software; FSE 2015 19
[2] Van Aken, Dana, et al. "Automatic Database Management System Tuning Through Large-scale Machine Learning." ICMD 2017.



Why is it important?

Necessary

Default MySQL configuration in 2016 assumes that

machine has only 160 MB of RAM Complex

Rule-of-thumb settings for WordCount (in Hadoop) Default is not good

gave one of its Worst execution times?

[1] Van Aken, Dana, et al. "Automatic Database Management System Tuning Through Large-scale Machine Learning." International Conference on

Management of Data. ACM, 2017. 20
[2] Herodotou, Herodotos, et al. "Starfish: A Self-tuning System for Big Data Analytics." CIDR



Why is it important?

« Evaluation of single instance of software/hardware
| J / Necessary
co-design problem can take weeks!
Complex
« Rolling Sort use-case required 21 days, within a total
experimental time of about 2.5 months Default is not good
« Test suite generation using Evolutionary Algorithm Expensive

can take weeksl3

[1] Zuluaga, Marcela, et al. "Active learning for multi-objective optimization." International Conference on Machine Learning. 2013.
[2] Jamshidi, Pooyan, and Giuliano Casale. "An uncertainty-aware approach to optimal configuration of stream processing systems."MAﬁ.‘OTS-2016
[3] Wang, Tiantian, et al. "Searching for better configurations: a rigorous approach to clone evaluation." FSE-2013



Cloud Computing
*Ernest

Cherrypick
*PARIS

Machine Learning
‘Hyperparameter
Tuning

*Random search
SMBO

*Fabolas

Database
Otter-tune
eltuned

Software Engineering
Tuning or Default Values?
*Tuning for Software Analytics

*Tuning for Defect Prediction
*Topic Modelling

Why is it important?

Necessary

Complex

Default is not good

Expensive

Ubiquitous
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24



DataRobot Performance
"" Optimization
cloudability

uncountable

©

Why is it important?

Necessary

Complex

Default is not good

Expensive

Ubiquitous

25



- Optimization is ubigquitous and expensive
- The Model-based optimization is a popular alternative

Claim: Better ways to build and use Models

Case Study: Configurable Software System Optimization

Potential future application: Any optimization problem



Previously on Performance Optimization izl

Residual based Methods

[1] Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
[2] Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

27



Residual-based Method Previously...

Request

Response
Time -
Apache Web Server
Response

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015 28
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Time = (CART)
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Residual-based Method Previously...
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Expensive



“.in real world scenarios, the cost of acquiring the optimal configuration

is overly expensive and time consuming..”
- Gary M Weiss and Ye Tian

Gary M Weiss and Ye Tian. Maximizing classifier utility when there are data acquisition and modeling costs. Data Mining and Knowledge
Discovery, 17(2):253-282, 2008. 50



“.in real world scenarios, the cost of acquiring the optimal configuration

is overly expensive and time consuming..”
- Gary M Weiss and Ye Tian

Effective performance optimization of configurable software systems only requires
approximate, cheap and easy to build models.
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Clustering Ranking SMBO
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Effective performance optimization of configurable software systems only requires
approximate, cheap and easy to build models.

Clustering Ranking SMBO

Sarkar
et al.

2013 2015 2016 2017 2018

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015 >3



Effective performance optimization of configurable software systems only requires
approximate, cheap and easy to build models.

Evolutionary
Algorithms

Clustering Ranking SMBO

2013 2015 2016 2017 2018

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015 >4



Effective performance optimization of configurable software systems only requires
approximate, cheap and easy to build models.

Clustering Ranking SMBO

2013 2015 2016 2017 2018

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015 55



Effective performance optimization of configurable software systems only requires
approximate, cheap and easy to build models.

Clustering Ranking SMBO
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Effective performance optimization of configurable software systems only requires
approximate, cheap and easy to build models.

Arrow Scout Mickey

Clustering Ranking SMBO
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Effective performance optimization of configurable software systems only requires
approximate, cheap and easy to build models.
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Presented during Written Prelims

Y

Clustering Ranking SMBO

Nair et al.; Faster discovery of faster system configurations with spectral learning; ASEJ (2016)
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WHAT (Clustering) Intuition
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WHAT (Clustering) Intuition

Performance

Configurations

Oh, J., Batory, D., Myers, M., & Siegmund, N. (2017, August). Finding near-optimal configurations in
product lines by random sampling. Foundations of Software Engineering(pp. 61-71). ACM. 66
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WHAT (Clustering) Intuition

£ « Most of the configuration options does not affect the performance
* First Cluster then Sample
Configurations
x
\x
\

Oh, J., Batory, D., Myers, M., & Siegmund, N. (2017, August). Finding near-optimal configurations in
Configurations product lines by random sampling. Foundations of Software Engineering(pp. 61-71). ACM. 68
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WHAT (Clustering) Previously?

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
Clustering + Sampling Policies Testing
{‘ Check Performance
IF:
== MMRE < T: Exit
ELSE:

CART continue
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WHAT (Clustering) How to Cluster?
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WHAT (Clustering) How to Cluster?
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WHAT (Clustering) How to Cluster?

1. Select random configuration (initial)
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WHAT (Clustering) How to Cluster?

1. Select random configuration (initial)
2. Find furthest point (east)
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WHAT (Clustering) How to Cluster?

1. Select random configuration (initial)
2. Find furthest point (east)
3. Find furthest point from east (west)
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WHAT (Clustering)

INFNENIES

How to Cluster?

Select random configuration (initial)
Find furthest point (east)
Find furthest point from east (west)

. Connect east and west (d)

81



WHAT (Clustering) How to Cluster?

Select random configuration (initial)
Find furthest point (east)
Find furthest point from east (west)
Connect east and west (d)
Projects configurations to d

a) For all points

0 Choose a point (candidate)
O Calculate position on d

OIENINENIE

west
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How to Cluster?

Select random configuration (initial)
Find furthest point (east)
Find furthest point from east (west)
Connect east and west (d)
Projects configurations to d

a) For all points

0 Choose a point (candidate)
O Calculate position on d

OIENINENIE
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How to Cluster?

Select random configuration (initial)
Find furthest point (east)
Find furthest point from east (west)
Connect east and west (d)
Projects configurationsto d

a) For all points

O Choose a point (candidate)
O Calculate position on d

6. Split at median of d

AW
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WHAT (Clustering) How to Cluster?

Select random configuration (initial)
Find furthest point (east)
Find furthest point from east (west)
Connect east and west (d)
Projects configurationsto d

a) For all points

O Choose a point (candidate)
O Calculate position on d

Split at median of d
Recurse

AW

~N o

Gl
ES
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WHAT (Clustering) How to Cluster?

Select random configuration (initial)
Find furthest point (east)
Find furthest point from east (west)
Connect east and west (d)
Projects configurationsto d

a) For all points

O Choose a point (candidate)
O Calculate position on d

Split at median of d
Recurse
Stop when |n| < sqrt(N)

AW

® N o)

B
EEE
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WHAT (Clustering)

How to Cluster?

Select random configuration (initial)
Find furthest point (east)
Find furthest point from east (west)
Connect east and west (d)
Projects configurations to d

a) For all points

0 Choose a point (candidate)
O Calculate position on d

Split at median of d
Recurse
Stop when |n| < sqgrt(N)

NN

N o

Sampling Policies

e Random
o Choose a candidate at random
o Number of evaluations/Cluster =1
o Point selected/Cluster =1

e FEast-West
o Choose extreme points in
dimension of maximum variance
Number of evaluations/Cluster = 2
Point selected/Cluster =2

e Exemplar
o Choose the best candidate from
the cluster
Number of evaluations/Cluster = n
Point selected/Cluster =1
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WHAT (Clustering)

How to Cluster?

Select random configuration (initial)
Find furthest point (east)
Find furthest point from east (west)
Connect east and west (d)
Projects configurations to d

a) For all points

0 Choose a point (candidate)
O Calculate position on d

Split at median of d
Recurse
Stop when |n| < sqgrt(N)

NN

N o

Sampling Policies

e Random
o Choose a candidate at random
o Number of evaluations/Cluster =1
o Point selected/Cluster =1

e FEast-West
o Choose extreme points in
dimension of maximum variance
Number of evaluations/Cluster = 2
Point selected/Cluster =2

e Exemplar
o Choose the best candidate from
the cluster
Number of evaluations/Cluster = n
Point selected/Cluster =1
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WHAT (Clustering) Summary

« WHAT can generate good predictions using only a small number of configurations
« WHAT can build “good” models which can be used in optimizers

« WHAT is comparable to the state of the art predictors
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WHAT (Clustering) Summary

« WHAT can generate good predictions using only a small number of configurations
« WHAT can build "good” models which can be used in optimizers

« WHAT is comparable to the state of the art predictors

- WHAT is close to the actual optimal
- Cheaper than the state of the art
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Unsupervised clustering does not work in all cases



Limitations

« Only works it WHAT can generate meaningful clusters.
« Only works when an accurate model can be built

 The stopping condition or threshold (1) is arbitrary
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« Only works it WHAT can generate meaningful clusters.

« Only works when an accurate model can be built

 The stopping condition or threshold (1) is arbitrary
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Limitations

« Only works it WHAT can generate meaningful clusters.
« Only works when an accurate model can be built
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« Only works it WHAT can generate meaningful clusters.
« Only works when an accurate model can be built

 The stopping condition or threshold (1) is arbitrary
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Limitations

Only works it WHAT can generate meaningful clusters.
Only works when an accurate model can be built

The stopping condition or threshold () is arbitrary
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Limitations

Only works it WHAT can generate meaningful clusters.
Only works when an accurate model can be built

The stopping condition or threshold () is arbitrary

, Bl < 5% 5% < MMRE < 10% Bl >10% So-Ftwa re Systems
I e e S e L L SN N S B B S o s A —— — ——

by CART

Software Systems used in
prior works
by CART
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All prior work would
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Presented during Oral Prelims

U

Clustering Ranking SMBO
W&

Q&’
A B

Nair et al,; Using Bad Learners to find Good Configurations; FSE (2017)
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Rank-preserving model rather than highly accurate model

Intuition
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E.z Ranking Intuition

Rank-preserving model rather than highly accurate model
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E.z Ranking Intuition

Rank-preserving model rather than highly accurate model
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@z Rranking Summary

* A rank-based method can be used to find (near) optimal configurations

 Arank-based approach requires fewer measurements
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s Rranking Conclusion

 Arank-based method can be used to find (near) optimal configurations

 Arank-based approach requires fewer measurements

- Rank based approaches finds configurations close to the actual optimal

- Cheaper than the state of the art
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Ranking is a useful paradigm
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Expensive



Clustering Ranking

Nair et al.; Finding faster configurations using Flash; TSE (2018)
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Flash (SMBO) Workflow of SMBO

Run a == Black-box == Rank and choose =; Return
Configuration Modeling next configuration
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@ Flash (SMBO) Workflow of SMBO

How to Model?

Run a => Black-box => Rank and choose =: Return
Configuration Modeling next configuration
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@ Flash (SMBO) Workflow of SMBO

Run a => Black-box => Rank and choose =: Return
Configuration Modeling next configuration
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Workflow of SMBO

acquisition max
acquisition (utility) function

Taken from Dr. Nando de Freitas (tiny.cc/4tgeny) 120



Flash (SMBO) Workflow of SMBO

t=2
observation == .. .
- I True Performance Distribution
L
P - /7\
-~ -
2 s~ -==" posterior mean

red

posterior mean

true objective

acquisition max
acquisition (utility) function

Taken from Dr. Nando de Freitas (tiny.cc/4tgeny) 121



Flash (SMBO) Workflow of SMBO

observation =g .. .
IS True Performance Distribution

-

-
Y ey posterior mean

red

posterior mean

true objective

acquisition max
acquisition (utility) function
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@ Flash (SMBO) Workflow of SMBO

observation ; } ]
True Performance Distribution

Predicted Performance Distribution

true objective

acquisition max
acquisition (utility) function

Taken from Dr. Nando de Freitas (tiny.cc/4tgeny) 123



@ Flash (SMBO) Workflow of SMBO

observation } } ]
True Performance Distribution

Surrogate of choice:

Predicted Performance Distribution (GP)

true objective

acquisition max
acquisition (utility) function

Taken from Dr. Nando de Freitas (tiny.cc/4tgeny) 124



@ Flash (SMBO) Workflow of SMBO

T2
observation P P . . .
_ax 2 True Performance Distribution
- T -
- e _ad S ° .
~g . _ : . ) urrogate of choice:
2 s=--=" posterior mean Predicted Performmance Distribution 9
~ (CJF))
true objective posterior mean
+/- stde . e ;
- Acquisition Function
acquisition max
acquisition (utility) function

Taken from Dr. Nando de Freitas (tiny.cc/4tgeny) 125



Flash (SMBO) Workflow of SMBO

t=2
observation - ; } ]
o] True Performance Distribution
Wy ,
o= — s i Surrogate of choice:
2 s=-==" posterior mean Predicted Performance Distribution 9 i
~ (CJF))
true objective posterior mean
+/- stde . .. .
| Acquisition Function f u(x) + «.a(x)
acquisition max
acquisition (utility) function Tradeoff between

126
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Workflow of SMBO

acquisition max
acquisition (utility) function

Taken from Dr. Nando de Freitas (tiny.cc/4tgeny) 127



Workflow of SMBO

Taken from Dr. Nando de Freitas (tiny.cc/4tgeny) 128



Workflow of SMBO

Taken from Dr. Nando de Freitas (tiny.cc/4tgeny) 129



Workflow of SMBO

true objective

Input: f, X, S, M

D + INITSAMPLES(f, X)

fori + |D|to T do
p(y | x,D) + FITMODEL(M, D)
X; ¢ argmax, . y S(x, p(y|x,D))
yi + f(x;) > Expensive step
D + D U (xi,y:)

end for

Taken from Dr. Nando de Freitas (tiny.cc/4tgeny) 130



Workflow of SMBO

Input: f, X, S, M

D « INITSAMPLES(f, X)

for i + |D|to T do

: p(y | x,D) + FITMODEL(M, D)
——\ acquisition max X; ¢ argmax, .y S(x, p(y|x,D))

acquisition (utility) function N
yi + f(x;) > Expensive step

D«DuU (xia yt)
end for
= . 0-0-0- M g @
Hyperopt MOE SMAC Spearmint

Google Vizier  ePAL

Taken from Dr. Nando de Freitas (tiny.cc/4tgeny) 131



@ Flash (SMBO) Limitations of SMBO

- GPMs can be very fragile, that is, very sensitive to the parameters of GPMsy;
- GPMs do not scale to high dimensional data as well as a large dataset,

« GPMs for optimization was limited to models with around ten decisionsg;

[1] Brochu et al.; “A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning,”; ArXiv, p. 49, 2010.
[2] Shen et al.; Fast gaussian process regression using kd-trees. In Advances in neural information processing systems; 2006. 132
[3] Wang et al.; Bayesian optimization in a billion dimensions via random embeddings; Journal of Artificial Intelligence Research, 2016.



@ Flash (SMBO) Workflow of Flash

Run a
Configuration
Modeling

1

Rank and

u(x) + k.o (x)
choose next

configuration

Return Config

Taken from Dr. Nando de Freitas (tiny.cc/4tgeny) 133



@ Flash (SMBO) Workflow of Flash

Run a
Configuration
Modeling

1

Rank and

LX) bieiioioa)

choose next
configuration

Return Config

Taken from Dr. Nando de Freitas (tiny.cc/4tgeny) 134



Workflow of Flash

Run a
Configuration
Modeling

Rank and

choose next

configuration

Return Config

Taken from Dr. Nando de Freitas (tiny.cc/4tgeny) 135



@ Flash (SMBO) Workflow of Flash

Run a
Configuration
Black-box
CART Modeling
Rank and

choose next

configuration

Return Config

Taken from Dr. Nando de Freitas (tiny.cc/4tgeny) 136



Workflow of Flash

CART
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Workflow of Flash

A4

CART
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Workflow of Flash

:C; | x = argmax(f'(x))

CART
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Workflow of Flash

:C; | x = argmax(f'(x))

CART
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Workflow of Flash

:C; | x = argmax(f'(x))

CART
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Workflow of Flash

x = argmax(f'(x))

CART
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@ Flash (SMBO) Research Questions

RQI1 Can FLASH find the good configuration?

RQ2 How expensive is FLASH?
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@ Flash (SMBO) Research Questions

- RQI  Can FLASH find the good configuration?

- RQ2 How expensive is FLASH?
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@ Flash (SMBO) Baselines

Sequentially (randomly) sample configuration to build a

Residual based Method decision tree till threshold accuracy is reached

Rank based Method Sequentially (randomly) sample configurations to build
a decision tree which preserves relative ordering
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@ Flash (SMBO) Baselines

Guo et al., 2013

Residual based Method Sequentially (randomly) sample configuration to build a

decision tree till threshold accuracy is reached

Nair et al., 2017

Rank based Method Sequentially (randomly) sample configurations to build
a decision tree which preserves relative ordering
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@ Flash (SMBO) Subject Systems

APACHE
@7 STORM Data Processing Mesh Solver

FPGA Seismic Analysis |-

Compiler Video Encoder
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FLASH can find better configurations.



% Flash (SMBO) RQ2: How expensive is FLASH?
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FLASH is cheaper than the state-of-the-art methods.



@ Flash (SMBO)

FLASH can answer
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FLASH can answer

Civen a software system, which configuration maximizes the
Q° throughput (performance measure) for a given benchmark?
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@® Fiash (sMBo)
FLASH can answer Single Objective problem

Civen a software system, which configuration maximizes the
Q° throughput (performance measure) for a given benchmark?

FLASH cannot answer Multi-Objective problem

Given a software system, which configuration maximizes the
Q- throughput while minimizing latency for a given benchmark?

How can FLASH be modified to solve multi objective (MO) problems?



Clustering

Nair et al.; Finding faster configurations using Flash; TSE (2018)
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What is a MO Problem??
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Single Objective Problems

Single ‘best’ solution
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What is a MO Problem??

—e— Actual -~ Predicted

900 T T T
800 -

700

600

500 | -
400
300

Objective; (to be minimized)

200 1 1 1 1
0 400 800 1200

Single Objective Problems

Objective, (to be minimized)
Single ‘best’ solution Multi-Objective Problems

* No single ‘best’ solution
« Number of ‘best’ solutions
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900 = T T T

800

700
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400
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200 1 1 1 1
0 400 800 1200

Single Objective Problems

Single ‘best’ solution

Objective; (to be minimized)

What is a MO Problem??

—e— Actual -~ Predicted

Predicted Pareto Front

Actual Pareto Front

Objective, (to be minimized)

Multi-Objective Problems

* No single ‘best’ solution
« Numlber of ‘best’ solutions
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@ Flash-X (SMBO) Workflow of Flash

Run a => Black-box => Rank and choose =: Return
Configuration Modeling next configuration

Single Objective CART pu(x)
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Run a => Black-box => Rank and choose =: Return
Configuration Modeling next configuration

Single Objective CART pu(x)

Multi Objective Multiple CARTs
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@ Flash-X (SMBO) Workflow of Flash

Run a => Black-box => Rank and choose =: Return
Configuration Modeling next configuration

Single Objective CART pu(x)

Multi Objective Multiple CARTs ?
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@ Flash-X (SMBO) How to acquire new configurations? Multi-objective
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@ Flash-X (SMBO) How to acquire new configurations? Multi-objective

* Need for a fithess assignment scheme to quantify relative fitness value.
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* Need for a fithess assignment scheme to quantify relative fitness value.

« Decomposition based scheme: Divide a problem into sub-problems.!!

N ) = ()T

Ai > O0forall: =1,...,m
ZZ—LM =1

maximize g“%(x|A) = Z)\ fi(x
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@ Flash-X (SMBO) How to acquire new configurations? Multi-objective

* Need for a fithess assignment scheme to quantify relative fitness value.

« Decomposition based scheme: Divide a problem into sub-problems.!!

N ) = ()T

Ai > O0forall: =1,...,m
ZZ—LM =1

N weight vectors can be used to find multiple pareto optimal solutions.

maximize g“%(x|A) = Z)\ fi(x

[1] Zhang, Qingfu, and Hui Li. "MOEA/D: A multiobjective evolutionary algorithm based on decomposition." IEEE Transactions on evolutionary

computation 11.6 (2007): 712-731. 187



Bazza
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@ Flash-X (SMBO)

4 g | x = bazza(x)

CARTs
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@ Flash-X (SMBO)

*

bazza(x)

0 Generate N unit vectors (V) of length M

X

CARTs
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*
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0 Generate N unit vectors (V) of length M

X
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@ Flash-X (SMBO)

x = bazza(x)
a Compute bazza for all configurations

0 Generate N unit vectors (V) of length M

CARTs
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@ Flash-X (SMBO)

bazza(x)

*

X
a Compute bazza for all configurations

0 Generate N unit vectors (V) of length M

CARTs
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@ Flash-X (SMBO)

x = bazza(x)
a Compute bazza for all configurations

0 Generate N unit vectors (V) of length M

CARTs

9 Return argmax(bazza;)
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@ Flash-X (SMBO) Workflow of Flash

Run a => Black-box => Rank and choose =: Return
Configuration Modeling next configuration

Single Objective CART u(x)

Multi Objective Multiple CARTs 2
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@ Flash-X (SMBO) Workflow of Flash

Run a => Black-box => Rank and choose =: Return
Configuration Modeling next configuration

Single Objective CART u(x)

Multi Objective Multiple CARTs Bazza
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@ Flash-X (SMBO) Baseline

- Reflects on the evaluated configurations to decide the next
ePAL best configuration to measure using Maximum Variance

(predictive uncertainty) as an acquisition function.

[1] Zuluaga et al.; "e-pal: an active learning approach to the multi-objective optimization problem.”; The Journal of Machine Learning
Research 17.1 (2016) 200



@ Flash-X (SMBO)

ePALMN

Baseline

Reflects on the evaluated configurations to decide the next
best configuration to measure using Maximum Variance
(predictive uncertainty) as an acquisition function.

We use two versions of ePAL;

. ePAL with € = 0.01 (ePAL_0.01)
. ePAL with € = 0.3 (ePAL_0.3)

[1] Zuluaga et al.; "e-pal: an active learning approach to the multi-objective optimization problem.”; The Journal of Machine Learning

Research 17.1 (2016)
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@ Flash-X (SMBO) Evaluation Metrics
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Flash-X (SMBO)

Generational
Distance
(GD)

Measures the closeness of the
solutions from by the optimizers
to the Pareto frontier that is, the
actual set of non-dominated
solutions.

Objective-2

Evaluation Metrics

A @ Predicted Configurations

@® Actual Pareto Frontier

2.
"

Objective-1
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Flash-X (SMBO)

Generational
Distance
(GD)

Inverted
Generational
Distance
(IGD)

Measures the closeness of the
solutions from by the optimizers
to the Pareto frontier that is, the
actual set of non-dominated
solutions.

Mean distance from points on
the true Pareto-optimal solutions
to its nearest point in solutions
returned by the optimizer.

Objective-2

Objective-2

A

Evaluation Metrics

@ Predicted Configurations

@® Actual Pareto Frontier

2.
"

A

Objective-1

@ rredicted Configurations

@ Actual Pareto Frontier

]
.j'f

Objective-1
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@ Flash-X (SMBO) Research Questions

RQ3 How effective is FLASH-X for MO performance optimization?

RQ4 Can FLASH-X reduce the effort of MO performance optimization?

RQ5 Does FLASH-X save time for MO performance optimization?
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RQ4 Can FLASH-X reduce the effort of MO performance optimization?

RQ5 Does FLASH-X save time for MO performance optimization?
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@ Flash-X (SMBO) RQ3: How effective is FLASH-X for MO performance optimization?
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@ Flash-X (SMBO) RQ3: How effective is FLASH-X for MO performance optimization?

GD IGD

Software

epal_0.01 epal_0.3 FLASH-X epal_0.01 epal_0.3 FLASH-X
SS-A 0.002 0.002 0 0.002 0.002 0
SS-B 0 0 0.005 0 0.003 0.001
SS-C 0.001 0.001 0.003 0.004 0.004 0
SS-D 0 0.004 0.014 0.002 0.007 0.009
SS-E 0.001 0.001 0.012 0.004 0.008 0.002
SS-F 0 0.016 0.008 0 0.006 0.016
SS-G 0 0 0.023 0.003 0.006 0.004
SS-H 0 0 0 0 0 0
SS-1 0.008 0.018 0 0.008 0.018 0
SS-J 0 0 0.002 0.002 0.002 0
SS-K 0.001 0.001 0.003 0.001 0.002 0.001
SS-L 0.01 0.028 0.006 0.007 0.008 0.009
SS-M X X 0 X X 0
SS-N X X 0.065 X X 0.015
SS-0O X X  3.01E-07 X X  3.20E-06

Win (%) 73 67 93 67 33 67
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@ Flash-X (SMBO) RQ3: How effective is FLASH-X for MO performance optimization?

GD IGD

Software

epal_0.01 epal_0.3 FLASH-X epal_0.01 epal_0.3 FLASH-X
SS-A 0.002 0.002 0 0.002 0.002 0
SS-B 0 0 0.005 0 0.003 0.001
SS-C 0.001 0.001 0.003 0.004 0.004 0
SS-D 0 0.004 0.014 0.002 0.007 0.009
SS-E 0.001 0.001 0.012 0.004 0.008 0.002
SS-F 0 0.016 0.008 0 0.006 0.016
SS-G 0 0 0.023 0.003 0.006 0.004
SS-H 0 0 0 0 0 0
SS-1 0.008 0.018 0 0.008 0.018 0
SS-J 0 0 0.002 0.002 0.002 0
SS-K 0.001 0.001 0.003 0.001 0.002 0.001
SS-L 0.01 0.028 0.006 0.007 0.008 0.009
SS-M X X 0 X X 0
SS-N X X 0.065 X X 0.015
SS-0O X X  3.01E-07 X X  3.20E-06

Win (%) 73 67 93 67 33 67
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FLASH-X is very effective for MO performance configuration optimization.



@ Flash-X (SM BO) RQ4: Can FLASH-X reduce the e.ffort of MO performance
optimization?
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@ Flash-X (SMBO)

RQ4: Can FLASH-X reduce the effort of MO performance

optimization?

Software Evals

epal_0.01 epal 0.3 FLASH-X
SS-A 109.5 73.5 50
SS-B 84.5 20 50
SS-C 247 101 50
SS-D 119.5 67 50
SS-E 208 54.5 50
SS-F 138 71 50
SS-G 131 69 50
SS-H 52 28 50
SS-1 48 30 50
SS-J 186 30 50
SS-K 209 140 50
SS-L 68.5 35 50
SS-M X X 50
SS-N X X 50
SS-O X X 50
Win (%) 0 33 80
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@ Flash-X (SMBO)

RQ4: Can FLASH-X reduce the effort of MO performance

optimization?

Software Evals

epal_0.01 epal 0.3 FLASH-X
SS-A 109.5 73.5 50
SS-B 84.5 20 50
SS-C 247 101 50
SS-D 119.5 67 50
SS-E 208 54.5 50
SS-F 138 71 50
SS-G 131 69 50
SS-H 52 28 50
SS-1 48 30 50
SS-J 186 30 50
SS-K 209 140 50
SS-L 68.5 35 50
SS-M X X 50
SS-N X X 50
SS-O X X 50
Win (%) 0 33 80
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FLASH-X requires fewer measurements than ePAL.



@ Flash-X (SMBO) RQ5: Does FLASH-X save time for MO performance optimization?
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@ Flash-X (SMBO) RQ5: Does FLASH save time for MO performance optimization?

Il epal 001 [ epal0.3

Gain Ratio

TOOoQUWULGI 22X J=Z0
NDDNDDDDNDNDARDDD W
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Software Systems
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FLASH-X saves time and is faster than (variants of) ePAL in 13/15 cases.



Use the model to sample



Effective performance optimization of configurable software systems only requires
approximate, cheap and easy to build models.
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Effective performance optimization of configurable software systems only requires
approximate, cheap and easy to build models.

» First Cluster and then Sample to avoid redundant samples
« Did not perform well in External Validation Studies

Clustering
Unsupervised clustering does not work in all cases

« The Ranking is a useful paradigm
3 « Ranking is extremely robust to errors or outliers
* reduces the number of training samples to train models

Ranking * Requires use of holdout set

(Il
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Effective performance optimization of configurable software systems only requires
approximate, cheap and easy to build models.

» First Cluster and then Sample to avoid redundant samples
« Did not perform well in External Validation Studies

Clustering
_ Unsupervised clustering does not work in all cases
« The Ranking is a useful paradigm
m « Ranking is extremely robust to errors or outliers
* reduces the number of training samples to train models
Ranking « Requires use of holdout set

Evaluating holdout set can be expensive, hence not suitable in practice

(Il
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Effective performance optimization of configurable software systems only requires
approximate, cheap and easy to build models.

« First Cluster and then Sample to avoid redundant samples
« Did not perform well in External Validation Studies

Clustering
Unsupervised clustering does not work in all cases

(Il

« The Ranking is a useful paradigm

3 « Ranking is extremely robust to errors or outliers
* reduces the number of training samples to train models
Ranking « Requires use of holdout set

Evaluating holdout set can be expensive, hence not suitable in practice

(Il
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Effective performance optimization of configurable software systems only requires
approximate, cheap and easy to build models.

» First Cluster and then Sample to avoid redundant samples
« Did not perform well in External Validation Studies

Clustering
Unsupervised clustering does not work in all cases

(Il

« The Ranking is a useful paradigm

3 « Ranking is extremely robust to errors or outliers
* reduces the number of training samples to train models
Ranking « Requires use of holdout set

Evaluating holdout set can be expensive, hence not suitable in practice

(Il

‘ « “Given what one knows about the problem, what can be done next?”
Is a powerful idea

wn
<
W
O

Use model to sample

(Il
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Future Work

Can expert knowledge be used to increase the rate of convergence?
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Future Work

\(\e\oop
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W Can expert knowledge be used to increase the rate of convergence?

Can we learn from our experience to increase the rate of convergence or decrease
the cost?

FLASH has to be repeated if ever the software is updated on the workload
of the system changes abruptly or environment changes.
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Effective performance optimization of configurable software systems only requires
approximate, cheap and easy to build models.
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Effective performance optimization of configurable software systems only requires
approximate, cheap and easy to build models.

Thank you

“There’s no sense in being precise when you don’t even know what you’re talking about.”
—John von Neumann
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Objective-2

@ rPredicted Configurations

@ Actual Pareto Frontier

!
o

Objective-1
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Objective-2

@ Predicted Configurations

@ Actual Pareto Frontier

Objective-1
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Decision Tree

Parents
Visiting

Yes No

: - It worked!

Cinema Heather - Prior work* used CART
Sunny Windy|  Rainy - Scalable

- More comprehensible

Play tennis e Stay in

Rich Poor

ERE Cinema

[Guo’13] Guo, Jienmei, et al. “Variability-aware performance prediction: A statistical learning approach”. ASE-2013
[Sarkar’15] Sarkar, Atri, et al. "Cost-efficient sampling for performance prediction of configurable systems (t)." ASE-2015
[Nair’16] Nair, Vivek, et al. "Faster discovery of faster system configurations with spectral learning." ASE Journal-2017




SOFTWARE REGR. MODEL ACQ. FUNCTION

SPEARMINT GAUSSIAN PROCESS EXP. IMPROV
MOE GAUSSIAN PROCESS EXP. IMPROV
HYPEROPT TREE PARZEN EST. EXP. IMPROV
SMAC RANDOM FOREST EXP. IMPROV
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