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Future Work: When will Flash win?

● Flash can reduce the cost of performance optimization.

● Flash can be adapted to solve multi-objective performance optimization.

Flashback from last exam



Effective performance optimization of configurable 
software systems only requires 

approximate, cheap and easy to build models.
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Software System Output.mp4

Configuration Options

C1 C2 C3 C(n-1) C(n)

Performance

Input.y4m

Encoding time.

What?
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Software System Output.mp4

Configuration Options

C1 C2 C3 C(n-1) C(n)

Performance

Encoding time. Throughput.
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Software System Output.mp4

Configuration Options

C1 C2 C3 C(n-1) C(n)

Performance

Input.y4m

Find (near) optimal configuration of a software system 
while minimizing measurements

What?
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Configuration Options

Configuration
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Configuration Options

Configuration Performance



What?

16

Configuration Options

Configuration Performance

Optimal Solution



Necessary

public void addElement (Element elem) {
if(myList != null){

myList.add(elem);
}

}

Best

Worst
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Why is it important?



Necessary
Best

Worst

System: Apache Storm
Workload: Word Count

Performance: Throughput
#Configuration options: 6

Necessary
200 new configuration options 
added to Apache HTTP server 
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Best configuration is 480 times 
better than 

Worst configuration

Why is it important?



Necessary
200 new configuration options 
added to Apache HTTP server 

between 2010 and 2014[1]

250 new configuration options added 
to MySQL between 2012 and 2016[2]

Complex

Default MySQL configuration in 2016 assumes that 
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Why is it important?

[1] Xu et. al.; Hey, you have given me too many knobs!: understanding and dealing with over-designed configuration in system software; FSE 2015
[2] Van Aken, Dana, et al. "Automatic Database Management System Tuning Through Large-scale Machine Learning." ICMD 2017.



Necessary

Complex

[1] Van Aken, Dana, et al. "Automatic Database Management System Tuning Through Large-scale Machine Learning." International Conference on 
Management of Data. ACM, 2017.
[2] Herodotou, Herodotos, et al. "Starfish: A Self-tuning System for Big Data Analytics." CIDR

Default MySQL configuration in 2016 assumes that 
machine has only 160 MB of RAM[1]

Rule-of-thumb settings for WordCount (in Hadoop) 
gave one of its worst execution times[2]

Default is not good

• Evaluation of single instance of software/hardware 
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Why is it important?



Necessary

Complex

[1] Zuluaga, Marcela, et al. "Active learning for multi-objective optimization." International Conference on Machine Learning. 2013.
[2] Jamshidi, Pooyan, and Giuliano Casale. "An uncertainty-aware approach to optimal configuration of stream processing systems."MASCOTS-2016
[3] Wang, Tiantian, et al. "Searching for better configurations: a rigorous approach to clone evaluation." FSE-2013

Default is not good

• Evaluation of single instance of software/hardware 
co-design problem can take weeks[1]

• Rolling Sort use-case required 21 days, within a total 
experimental time of about 2.5 months[2]

• Test suite generation using Evolutionary Algorithm 
can take weeks[3]

Expensive

Cloud Computing Database
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Why is it important?



Necessary

Complex

Default is not good

Expensive

Cloud Computing
•Ernest
•Cherrypick
•PARIS

Machine Learning
•Hyperparameter 
Tuning
•Random search
•SMBO
•Fabolas

Database
•Otter-tune
•Ituned

Software Engineering
•Tuning or Default Values?
•Tuning for Software Analytics
•Tuning for Defect Prediction
•Topic Modelling

Ubiquitous
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Why is it important?

https://amplab.cs.berkeley.edu/wp-content/uploads/2016/03/nsdi16-paper-venkataraman.pdf
http://shivaram.org/publications/cherrypick-nsdi17.pdf
https://people.eecs.berkeley.edu/~neerajay/paris_socc17.pdf
https://arxiv.org/abs/1602.02355
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
https://arxiv.org/pdf/1605.07079.pdf
https://www.cs.cmu.edu/~ggordon/van-aken-etal-parameters.pdf
https://users.cs.duke.edu/~shivnath/papers/ituned.pdf
https://link.springer.com/article/10.1007/s10664-013-9249-9
https://arxiv.org/pdf/1609.01759.pdf
http://chakkrit.com/assets/papers/tantithamthavorn2016icse.pdf
https://arxiv.org/pdf/1608.08176.pdf
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Performance 
Optimization
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Performance 
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Necessary

Complex

Default is not good

Expensive

Ubiquitous

Why is it important?



- Optimization is ubiquitous and expensive
- The Model-based optimization is a popular alternative

Claim: Better ways to build and use Models

Case Study: Configurable Software System Optimization

Potential future application: Any optimization problem



Previously on Performance Optimization [1][2]
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[1] Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
[2] Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Residual based Methods
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Previously…
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Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Residual-based Method



Request

Response

ML Model
(CART)

Request

Response

Response 
Time
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Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



Configuration Space

# Measurements = 0
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Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



Training
40%

Validation
20%

Testing
40%

# Measurements = 0
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



Configuration Space

# Measurements = 64
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Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



# Measurements = 64

CART
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



# Measurements = 64

CART

Random Sampling

34

Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



# Measurements = 72

CART

Random Sampling
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



# Measurements = 72

CART

Random Sampling Testing
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



# Measurements = 72

CART

Random Sampling Testing

IF:
MMRE < τ: Exit

ELSE:
continue

Check Performance
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



# Measurements = 72

CART

Random Sampling Testing

IF:
MMRE < τ: Exit

ELSE:
continue

Check Performance
Mean Magnitude of Relative Error
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



# Measurements = 72

CART

Random Sampling Testing

IF:
MMRE < τ: Exit

ELSE:
continue

Check Performance
Mean Magnitude of Relative Error

MMRE= |actual - predicted|
actual
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



# Measurements = 72

CART

Random Sampling Testing

IF:
MMRE < τ: Exit

ELSE:
continue

Check Performance

Threshold
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Configuration Space

Previously…Residual-based Method

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015



# Measurements = 72

CART

Random Sampling Testing

IF:
MMRE < τ: Exit
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



# Measurements = 73

CART

Random Sampling Testing

IF:
MMRE < τ: Exit

ELSE:
continue

Check Performance
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



# Measurements = 74

CART

Random Sampling Testing

IF:
MMRE < τ: Exit

ELSE:
continue

Check Performance
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



# Measurements = 74

CART

Find Good 
Configuration
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



CART
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



CART

How close is the predicted optimal from actual optimal?
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



CART

How close is the predicted optimal from actual optimal?Quality
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…Residual-based Method



CART

How close is the predicted optimal from actual optimal?Quality

Cost $ ???
48

Configuration Space

Previously…Residual-based Method



Regression Tree

How close is the predicted optimal from actual optimal?Quality

Cost ???
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Configuration Space

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

Previously…

Expensive



“..in real world scenarios, the cost of acquiring the optimal configuration 
is overly expensive and time consuming..”

Gary M Weiss and Ye Tian. Maximizing classifier utility when there are data acquisition and modeling costs. Data Mining and Knowledge 
Discovery, 17(2):253–282, 2008.
Effective performance optimization of configurable software systems only

requires approximate, cheaper and easy to build models.

50

- Gary M Weiss and Ye Tian



Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.

Clustering Ranking SMBO
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“..in real world scenarios, the cost of acquiring the optimal configuration 
is overly expensive and time consuming..”

- Gary M Weiss and Ye Tian



Clustering Ranking SMBO
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Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.



Clustering Ranking SMBO
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Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.

Guo 
et al.

Sarkar 
et al.

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

2013 2015 2016 2017 2018



Clustering Ranking SMBO
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Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.

Guo 
et al.

2013

Sarkar 
et al.

2015

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

2016 2017 2018

Evolutionary 
Algorithms



Clustering Ranking SMBO

55

Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.

Guo et 
al.

2013

Sarkar 
et al.

2015

Guo et al.; "Variability-aware performance prediction: A statistical learning approach.”; ASE-2013
Sarkar et al.;"Cost-efficient sampling for performance prediction of configurable systems (t).”; ASE-2015

2016 2017 2018

Evolutionary 
Algorithms



Clustering Ranking SMBO
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Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.
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Arrow Scout Mickey

ICDCS’18 CLOUD’18*

Cloud Computing

Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.

Clustering Ranking SMBO
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Arrow Scout Mickey

ICDCS’18 CLOUD’18*

Cloud Computing

Transfer Learning

Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.

Clustering Ranking SMBO

BEETLE

*
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Arrow Scout Mickey

ICDCS’18 CLOUD’18*

Cloud Computing

Transfer Learning

Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.

Clustering Ranking SMBO

*

BEETLE
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ROME

Effort Estimation
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Clustering Ranking SMBO
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Clustering Ranking SMBO



Nair et al.; Faster discovery of faster system configurations with spectral learning; ASEJ (2016)
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Clustering Ranking SMBO

WHA
T

Presented during Written Prelims



WHAT (Clustering)
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Intuition
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Expectation

Oh, J., Batory, D., Myers, M., & Siegmund, N. (2017, August). Finding near-optimal configurations in 
product lines by random sampling. Foundations of Software Engineering(pp. 61-71). ACM. 66
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IntuitionWHAT (Clustering)

Reality



• Most of the configuration options does not affect the performance

• First Cluster then Sample
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Oh, J., Batory, D., Myers, M., & Siegmund, N. (2017, August). Finding near-optimal configurations in 
product lines by random sampling. Foundations of Software Engineering(pp. 61-71). ACM. 68

IntuitionWHAT (Clustering)



# Measurements = 64

CART

WHAT
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Configuration Space

WHAT (Clustering)



# Measurements = 64

CART

Clustering

C1 C2

C4
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Configuration Space

WHAT (Clustering)
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# Measurements = 64

CART

Clustering

C1 C2

C3
C4
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# Measurements = 64

CART

Clustering Sampling Policies+
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WHAT
Configuration Space

WHAT (Clustering)



# Measurements = 68

CART

Clustering Sampling Policies+
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WHAT
Configuration Space

WHAT (Clustering)



# Measurements = 68

CART

Previously?

Clustering Sampling Policies+ Testing

IF:
MMRE < τ: Exit

ELSE:
continue

Check Performance
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Configuration Space

WHAT (Clustering)



Configuration Space
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How to Cluster?WHAT (Clustering)
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How to Cluster?

Configuration Space

WHAT (Clustering)



Configuration
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How to Cluster?

Configuration Space

WHAT (Clustering)



1. Select random configuration (initial)

initial
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How to Cluster?

Configuration Space

WHAT (Clustering)



1. Select random configuration (initial)
2. Find furthest point (east)

initial

east
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How to Cluster?

Configuration Space

WHAT (Clustering)



1. Select random configuration (initial)
2. Find furthest point (east)
3. Find furthest point from east (west)

initial

east

west
80

How to Cluster?

Configuration Space

WHAT (Clustering)



1. Select random configuration (initial)
2. Find furthest point (east)
3. Find furthest point from east (west)
4. Connect east and west (d)

d
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How to Cluster?

Configuration Space

WHAT (Clustering)



1. Select random configuration (initial)
2. Find furthest point (east)
3. Find furthest point from east (west)
4. Connect east and west (d)
5. Projects configurations to d

a) For all points
q Choose a point (candidate)
q Calculate position on d

d

eastwest

a b

cx
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How to Cluster?

Configuration Space

WHAT (Clustering)



1. Select random configuration (initial)
2. Find furthest point (east)
3. Find furthest point from east (west)
4. Connect east and west (d)
5. Projects configurations to d

a) For all points
q Choose a point (candidate)
q Calculate position on d
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How to Cluster?

Configuration Space

WHAT (Clustering)



1. Select random configuration (initial)
2. Find furthest point (east)
3. Find furthest point from east (west)
4. Connect east and west (d)
5. Projects configurations to d

a) For all points
q Choose a point (candidate)
q Calculate position on d

6. Split at median of d
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1. Select random configuration (initial)
2. Find furthest point (east)
3. Find furthest point from east (west)
4. Connect east and west (d)
5. Projects configurations to d

a) For all points
q Choose a point (candidate)
q Calculate position on d

6. Split at median of d
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How to Cluster?

Configuration Space

WHAT (Clustering)



1. Select random configuration (initial)
2. Find furthest point (east)
3. Find furthest point from east (west)
4. Connect east and west (d)
5. Projects configurations to d

a) For all points
q Choose a point (candidate)
q Calculate position on d

6. Split at median of d
7. Recurse
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How to Cluster?

Configuration Space

WHAT (Clustering)



1. Select random configuration (initial)
2. Find furthest point (east)
3. Find furthest point from east (west)
4. Connect east and west (d)
5. Projects configurations to d

a) For all points
q Choose a point (candidate)
q Calculate position on d

6. Split at median of d
7. Recurse
8. Stop when |n| < sqrt(N)
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How to Cluster?

Configuration Space

WHAT (Clustering)



1. Select random configuration (initial)
2. Find furthest point (east)
3. Find furthest point from east (west)
4. Connect east and west (d)
5. Projects configurations to d

a) For all points
q Choose a point (candidate)
q Calculate position on d

6. Split at median of d
7. Recurse
8. Stop when |n| < sqrt(N)

● Random
○ Choose a candidate at random 
○ Number of evaluations/Cluster = 1
○ Point selected/Cluster = 1

● East-West
○ Choose extreme points in 

dimension of maximum variance
○ Number of evaluations/Cluster = 2
○ Point selected/Cluster = 2

● Exemplar
○ Choose the best candidate from 

the cluster
○ Number of evaluations/Cluster = n
○ Point selected/Cluster = 1

88

How to Cluster? Sampling Policies

WHAT (Clustering)



1. Select random configuration (initial)
2. Find furthest point (east)
3. Find furthest point from east (west)
4. Connect east and west (d)
5. Projects configurations to d

a) For all points
q Choose a point (candidate)
q Calculate position on d

6. Split at median of d
7. Recurse
8. Stop when |n| < sqrt(N)

● Random
○ Choose a candidate at random 
○ Number of evaluations/Cluster = 1
○ Point selected/Cluster = 1

● East-West
○ Choose extreme points in 

dimension of maximum variance
○ Number of evaluations/Cluster = 2
○ Point selected/Cluster = 2

● Exemplar
○ Choose the best candidate from 

the cluster
○ Number of evaluations/Cluster = n
○ Point selected/Cluster = 1
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How to Cluster? Sampling Policies

WHAT (Clustering)



• WHAT can  generate good predictions using only a small number of configurations

• WHAT can build “good” models which can be used in optimizers

• WHAT is comparable to the state of the art predictors
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SummaryWHAT (Clustering)



• WHAT can  generate good predictions using only a small number of configurations

• WHAT can build “good” models which can be used in optimizers

• WHAT is comparable to the state of the art predictors

WHAT is close to the actual optimalQuality

Cost Cheaper than the state of the art
91

SummaryWHAT (Clustering)
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Unsupervised clustering does not work in all cases
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Limitations
• Only works if WHAT can generate meaningful clusters.

• Only works when an accurate model can be built

• The stopping condition or threshold (τ) is arbitrary
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Limitations
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Software Systems used in 
prior works can be 
accurately modeled by CART
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Limitations
• Only works if WHAT can generate meaningful clusters.

• Only works when an accurate model can be built

• The stopping condition or threshold (τ) is arbitrary



Software Systems cannot be 
accurately modeled by CART
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Limitations

Software Systems used in 
prior works can be 
accurately modeled by CART

• Only works if WHAT can generate meaningful clusters.

• Only works when an accurate model can be built

• The stopping condition or threshold (τ) is arbitrary



Software Systems used in 
prior works can be 
accurately modeled by CART

Software Systems cannot be 
accurately modeled by CART

All prior work would FAIL
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Limitations
• Only works if WHAT can generate meaningful clusters.

• Only works when an accurate model can be built

• The stopping condition or threshold (τ) is arbitrary
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Rank-preserving model rather than highly accurate model 

Ranking
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Rank-preserving model rather than highly accurate model 

Best Configuration obtained using actual and the predicted values is the same

Ranking

108

Intuition



Configuration Space

# Measurements = 72

CART

Random Sampling Testing

IF:
Accuracy < T: Exit
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Check Performance
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# Measurements = 72

CART

Random Sampling Testing

IF:
Accuracy < T: Exit

ELSE:
continue

Check Performance

Ranking
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Configuration Space



• A rank-based method can be used to find (near) optimal configurations

• A rank-based approach requires fewer measurements

a rank-based approach requires fewer measurements

Ranking
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Summary



• A rank-based method can be used to find (near) optimal configurations

• A rank-based approach requires fewer measurements

Rank based approaches finds configurations close to the actual optimalQuality

Cost Cheaper than the state of the art

a rank-based approach requires fewer measurements

Ranking
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Conclusion
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Ranking is a useful paradigm



Configuration Space

# Measurements = 64

Limitations
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Configuration Space

# Measurements = 64

Previously?
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Expensive



Nair et al.; Finding faster configurations using Flash; TSE (2018)
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True Performance Distribution

Predicted Performance Distribution

Acquisition Function
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True Performance Distribution

Predicted Performance Distribution

Acquisition Function ! " + $. &(")
Tradeoff between 

Exploration vs Exploitation

Surrogate of choice: 
Gaussian Processes (GP)

Flash (SMBO) Workflow of SMBO



127Taken from Dr. Nando de Freitas (tiny.cc/4tgeny)

Flash (SMBO) Workflow of SMBO



128Taken from Dr. Nando de Freitas (tiny.cc/4tgeny)

Flash (SMBO) Workflow of SMBO



129Taken from Dr. Nando de Freitas (tiny.cc/4tgeny)

Flash (SMBO) Workflow of SMBO



130Taken from Dr. Nando de Freitas (tiny.cc/4tgeny)

Flash (SMBO) Workflow of SMBO



131Taken from Dr. Nando de Freitas (tiny.cc/4tgeny)

Flash (SMBO) Workflow of SMBO

SpearmintMOEHyperopt SMAC

ePAL



132

Flash (SMBO)

• GPMs can be very fragile, that is, very sensitive to the parameters of GPMs[1]

• GPMs do not scale to high dimensional data as well as a large dataset[2]

• GPMs for optimization was limited to models with around ten decisions[3]

[1] Brochu et al.; “A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning,”; ArXiv, p. 49, 2010.
[2] Shen et al.; Fast gaussian process regression using kd-trees. In Advances in neural information processing systems; 2006.
[3] Wang et al.; Bayesian optimization in a billion dimensions via random embeddings; Journal of Artificial Intelligence Research, 2016.

Limitations of SMBO
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Sequentially (randomly) sample configuration to build a 
decision tree till threshold accuracy is reachedResidual based Method

Sequentially (randomly) sample configurations to build 
a decision tree which preserves relative ordering

Rank based Method

Flash (SMBO) Baselines

Guo et al., 2013

Nair et al., 2017
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Data Processing

FPGA

Compiler

Mesh Solver

Seismic Analysis

Video Encoder

Flash (SMBO) Subject Systems
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Flash (SMBO) RQ1: Can FLASH find the good configuration?
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actualoptimal
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Flash (SMBO) RQ1: Can FLASH find the good configuration?
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actualoptimal
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6
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Flash (SMBO) RQ1: Can FLASH find the good configuration?
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actualoptimal
1

6
predictedoptimal

RD = |1 - 6| 
= 5

Flash (SMBO) RQ1: Can FLASH find the good configuration?
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Flash (SMBO) RQ1: Can FLASH find the good configuration?
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RQ1: Can FLASH find the good configuration?

17/53,662

RQ1: Can FLASH find the good configuration?

FLASH can find better configurations.
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Flash (SMBO) RQ2: How expensive is FLASH?

Lower is better
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RQ2: How expensive is FLASH?

RQ2: How expensive is FLASH?
FLASH is cheaper than the state-of-the-art methods.
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throughput while minimizing latency for a given benchmark?Q.

Single Obective
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Given a software system, which configuration maximizes the 
throughput (performance measure) for a given benchmark?Q.
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Single Objective 
problem

Flash (SMBO)

Given a software system, which configuration maximizes the 
throughput while minimizing latency for a given benchmark?Q.

Given a software system, which configuration maximizes the 
throughput (performance measure) for a given benchmark?Q.

How can FLASH be modified to solve multi objective (MO) problems?

Single Objective problem

Multi-Objective problemFLASH cannot answer

FLASH can answer
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Single Objective Problems

Single ‘best’ solution Multi-Objective Problems

Pareto Front
• No single ‘best’ solution
• Number of ‘best’ solutions

Actual Pareto Front

What is a MO Problem?
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Single Objective Problems
Actual Pareto Front

Predicted Pareto Front

Single ‘best’ solution Multi-Objective Problems

Pareto Front
• No single ‘best’ solution
• Number of ‘best’ solutions

What is a MO Problem?
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• Need for a fitness assignment scheme to quantify relative fitness value.

How to acquire new configurations? Multi-objectiveFlash-X (SMBO)
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[1] Zhang, Qingfu, and Hui Li. "MOEA/D: A multiobjective evolutionary algorithm based on decomposition." IEEE Transactions on evolutionary 
computation 11.6 (2007): 712-731.

• Decomposition based scheme: Divide a problem into sub-problems.[1]

How to acquire new configurations? Multi-objectiveFlash-X (SMBO)

• Need for a fitness assignment scheme to quantify relative fitness value.



185

[1] Zhang, Qingfu, and Hui Li. "MOEA/D: A multiobjective evolutionary algorithm based on decomposition." IEEE Transactions on evolutionary 
computation 11.6 (2007): 712-731.

• Need for a fitness assignment scheme to quantify relative fitness value.

How to acquire new configurations? Multi-objective

Weight Vector

• Decomposition based scheme: Divide a problem into sub-problems.[1]

Flash-X (SMBO)
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[1] Zhang, Qingfu, and Hui Li. "MOEA/D: A multiobjective evolutionary algorithm based on decomposition." IEEE Transactions on evolutionary 
computation 11.6 (2007): 712-731.
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• Need for a fitness assignment scheme to quantify relative fitness value.

[1] Zhang, Qingfu, and Hui Li. "MOEA/D: A multiobjective evolutionary algorithm based on decomposition." IEEE Transactions on evolutionary 
computation 11.6 (2007): 712-731.

Weight Vector

• N weight vectors can be used to find multiple pareto optimal solutions.  

Flash-X (SMBO) How to acquire new configurations? Multi-objective

• Decomposition based scheme: Divide a problem into sub-problems.[1]
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• Need for a fitness assignment scheme to quantify relative fitness value.

[1] Zhang, Qingfu, and Hui Li. "MOEA/D: A multiobjective evolutionary algorithm based on decomposition." IEEE Transactions on evolutionary 
computation 11.6 (2007): 712-731.

Weight Vector

• N weight vectors can be used to find multiple pareto optimal solutions.  

Flash (SMBO) How to acquire new configurations? Multi-objective

• Decomposition based scheme: Divide a problem into sub-problems.[1]

Bazza
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CARTs

.
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1 Generate N unit vectors (V) of length M

2 Compute bazza for all configurations

3 Return argmax(bazzai)

Flash-X (SMBO)
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Reflects on the evaluated configurations to decide the next 
best configuration to measure using Maximum Variance 

(predictive uncertainty) as an acquisition function.

BaselineFlash-X (SMBO)

ePAL[1]

[1] Zuluaga et al.; "ε-pal: an active learning approach to the multi-objective optimization problem.”; The Journal of Machine Learning 
Research 17.1 (2016)
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Reflects on the evaluated configurations to decide the next 
best configuration to measure using Maximum Variance 

(predictive uncertainty) as an acquisition function.
ePAL[1]

We use two versions of ePAL: 
• ePAL with ∈ = 0.01 (ePAL_0.01)
• ePAL with ∈ = 0.3 (ePAL_0.3)

BaselineFlash-X (SMBO)

[1] Zuluaga et al.; "ε-pal: an active learning approach to the multi-objective optimization problem.”; The Journal of Machine Learning 
Research 17.1 (2016)
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Evaluation MetricsFlash-X (SMBO)



Measures the closeness of the 
solutions from by the optimizers 
to the Pareto frontier that is, the 
actual set of non-dominated 
solutions.

a rank-based approach requires fewer measurements
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Generational 
Distance 
(GD)

Evaluation MetricsFlash-X (SMBO)



Measures the closeness of the 
solutions from by the optimizers 
to the Pareto frontier that is, the 
actual set of non-dominated 
solutions.

a rank-based approach requires fewer measurements
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Mean distance from points on 
the true Pareto-optimal solutions 
to its nearest point in solutions 
returned by the optimizer.

Generational 
Distance 
(GD)

Inverted 
Generational 
Distance 
(IGD)

Evaluation MetricsFlash-X (SMBO)
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How effective is FLASH-X for MO performance optimization?RQ3

Can FLASH-X reduce the effort of MO performance optimization?RQ4

Does FLASH-X save time for MO performance optimization?RQ5

Research QuestionsFlash-X (SMBO)

Quality

Cost



207

Flash-X (SMBO) RQ3: How effective is FLASH-X for MO performance optimization?



208

RQ3: How effective is FLASH-X for MO performance optimization?Flash-X (SMBO)

-X -X



209

RQ3: How effective is FLASH-X for MO performance optimization?Flash-X (SMBO)

-X -X



210

RQ3: How effective is FLASH for MO performance optimization?

RQ3: How effective is FLASH-X for MO performance optimization?

FLASH-X is very effective for MO performance configuration optimization.
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RQ4: Can FLASH-X reduce the effort of MO performance 
optimization?
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RQ4: Can FLASH-X reduce the effort of MO performance 
optimization?

Flash-X (SMBO)

-X
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RQ4: Can FLASH reduce the effort of MO performance optimization?

RQ4:Can FLASH-X reduce the effort of MO performance optimization?

FLASH-X requires fewer measurements than ePAL.
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RQ5: Does FLASH save time for MO performance optimization?Flash-X (SMBO)
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RQ5: Does FLASH save time for MO performance optimization?

RQ5: Does FLASH-X save time for MO performance optimization?

FLASH-X saves time and is faster than (variants of) ePAL in 13/15 cases.
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Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.
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• First Cluster and then Sample to avoid redundant samples
• Did not perform well in External Validation Studies

Unsupervised clustering does not work in all cases

• The Ranking is a useful paradigm
• Ranking is extremely robust to errors or outliers
• reduces the number of training samples to train models

• Requires use of holdout set

Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.
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• First Cluster and then Sample to avoid redundant samples
• Did not perform well in External Validation Studies

Unsupervised clustering does not work in all cases

• The Ranking is a useful paradigm
• Ranking is extremely robust to errors or outliers
• reduces the number of training samples to train models

• Requires use of holdout set

Evaluating holdout set can be expensive, hence not suitable in practice

Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.
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• First Cluster and then Sample to avoid redundant samples
• Did not perform well in External Validation Studies

Unsupervised clustering does not work in all cases

• The Ranking is a useful paradigm
• Ranking is extremely robust to errors or outliers
• reduces the number of training samples to train models

• Requires use of holdout set

Evaluating holdout set can be expensive, hence not suitable in practice

• “Given what one knows about the problem, what can be done next?” 
is a powerful idea

Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.
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SMBO

• First Cluster and then Sample to avoid redundant samples
• Did not perform well in External Validation Studies

Unsupervised clustering does not work in all cases

• The Ranking is a useful paradigm
• Ranking is extremely robust to errors or outliers
• reduces the number of training samples to train models

• Requires use of holdout set

Evaluating holdout set can be expensive, hence not suitable in practice

• “Given what one knows about the problem, what can be done next?” 
is a powerful idea

Use model to sample

Evaluating holdout set can be expensive, hence not suitable in practice

Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.
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Can expert knowledge be used to increase the rate of convergence?

Can we learn from our experience to increase the rate of convergence or decrease 
the cost?

Human in the loop

Future Work

FLASH has to be repeated if ever the software is updated on the workload
of the system changes abruptly or environment changes.
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Can we learn from our experience to increase the rate of convergence or decrease 
the cost?
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Can these ideas be applied to other domains?

Transfer Learning
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Can expert knowledge be used to increase the rate of convergence?

Can we learn from our experience to increase the rate of convergence or decrease 
the cost?

Human in the loop

External Validity

Transfer Learning

Future Work

Can these ideas be applied to other domains?



Effective performance optimization of configurable software systems only requires 
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Effective performance optimization of configurable software systems only requires 
approximate, cheap and easy to build models.
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Thank you

“There’s no sense in being precise when you don’t even know what you’re talking about.”
—John von Neumann
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Predicted Configurations

Actual Pareto Frontier
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Decision Tree

- It worked!
- Prior work* used CART
- Scalable
- More comprehensible

[Guo’13] Guo, Jienmei, et al. “Variability-aware performance prediction: A statistical learning approach”. ASE-2013
[Sarkar’15] Sarkar, Atri, et al. "Cost-efficient sampling for performance prediction of configurable systems (t)." ASE-2015
[Nair’16] Nair, Vivek, et al. "Faster discovery of faster system configurations with spectral learning." ASE Journal-2017
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