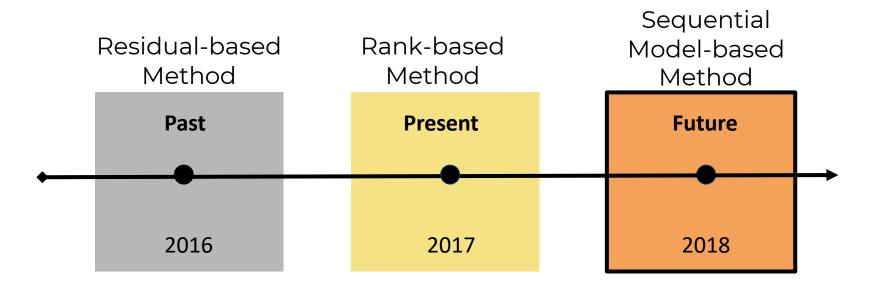


Frugal Ways of Finding "Good" Configurations

Vivek Nair Advisor: Dr. Tim Menzies

NC STATE UNIVERSITY

Flashback from last exam



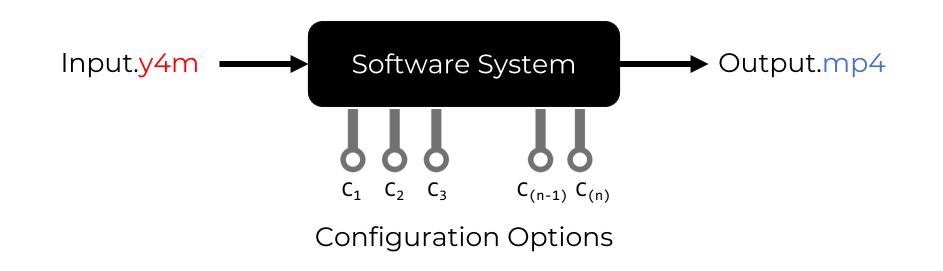
Future Work: When will Flash win?

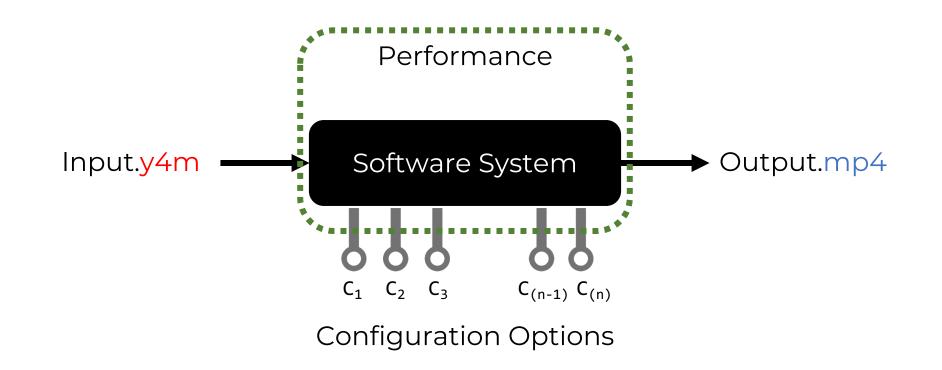
- Flash can reduce the cost of performance optimization.
- Flash can be adapted to solve multi-objective performance optimization.

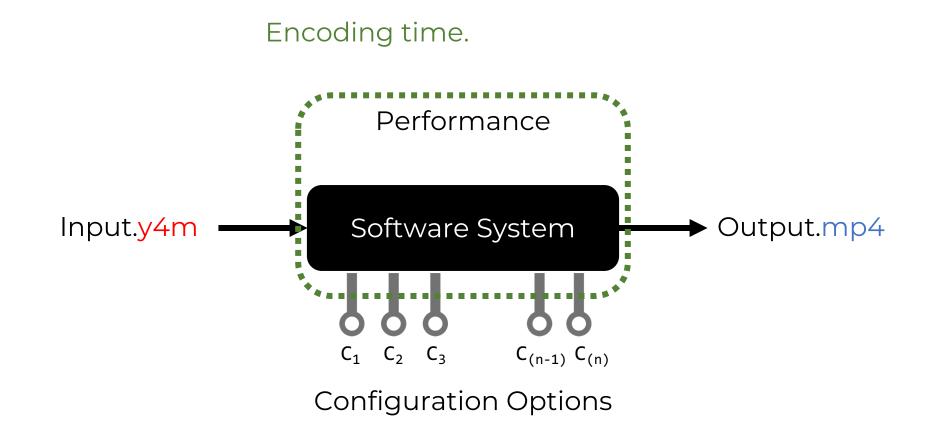
Statement of Thesis

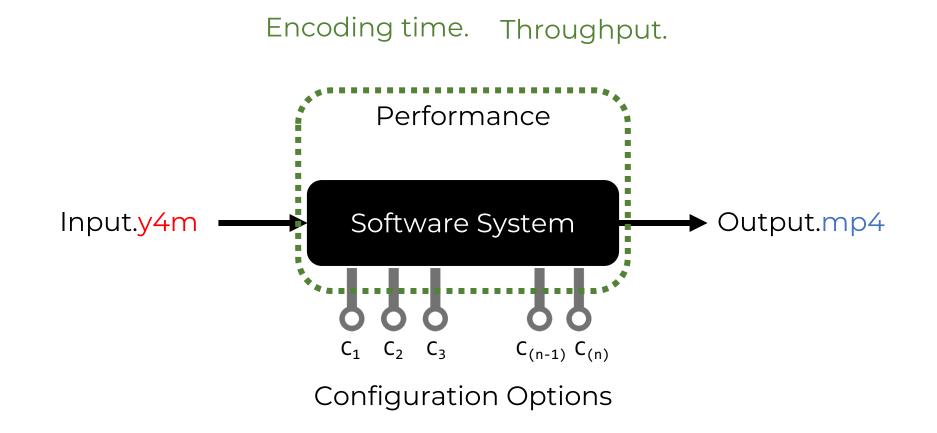
Effective performance optimization of configurable software systems only requires **approximate**, **cheap** and **easy to build** models.

Software System

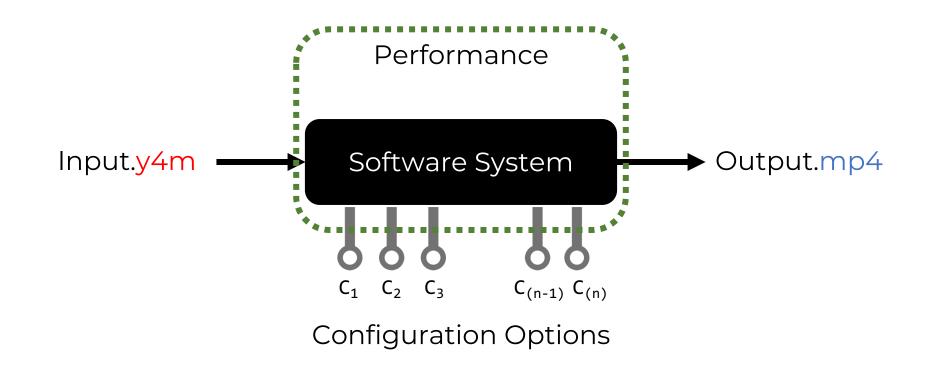








Find (near) optimal configuration of a software system while minimizing measurements



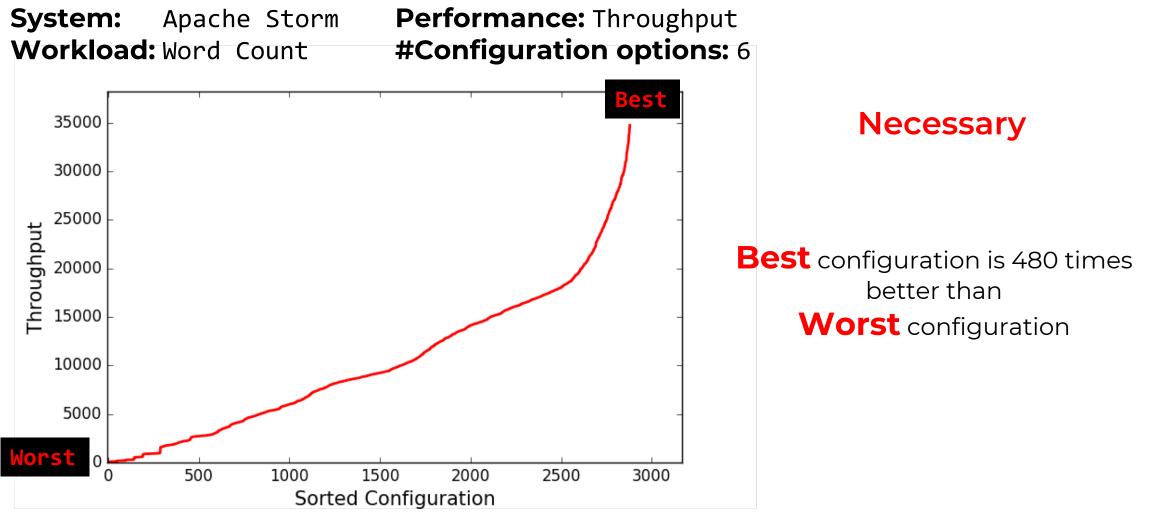
	Features														Perf. (s)	
x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	y_i
1	1	0	1	1	1	1	0	1	0	0	1	1	0	0	1	651
1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	0	536
1	1	1	1	0	0	0	0	1	1	0	0	1	0	0	1	581
1	0	0	0	0	0	1	0	1	1	0	0	1	0	1	0	381
1	1	0	1	0	0	0	1	1	1	0	0	1	0	1	0	424
1	1	0	0	1	0	1	1	1	1	0	0	1	0	0	1	615
1	0	1	0	1	1	1	0	1	1	0	0	1	0	1	0	477
1	0	1	0	0	0	0	1	1	0	0	1	1	1	0	0	263
1	0	0	0	0	0	1	1	1	0	0	1	1	1	0	0	272
1	1	1	1	0	0	0	1	1	0	0	1	1	1	0	0	247
1	0	0	0	0	0	0	0	1	0	1	0	1	0	0	1	612
1	0	1	1	1	0	0	0	1	0	0	1	1	0	1	0	510
1	1	1	1	0	1	1	0	1	0	1	0	1	0	0	1	555
1	1	0	0	1	0	1	1	1	0	0	1	1	1	0	0	264
1	0	1	0	0	1	1	1	1	0	0	1	1	0	0	1	576
1	0	1	0	1	0	1	1	1	0	1	0	1	1	0	0	268

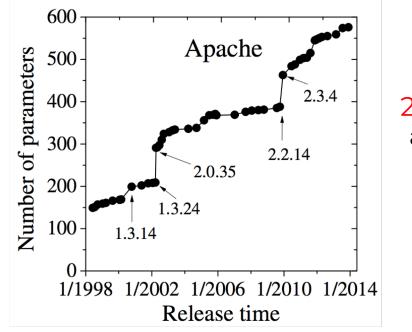
	Configuration Options								es							Perf. (s)
$\overline{x_1}$	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	y_i
1	1	0	T	1	1	1	0	1	0	0	1	1	0	0	1	651
1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	0	536
1	1	1	1	0	0	0	0	1	1	0	0	1	0	0	1	581
1	0	0	0	0	0	1	0	1	1	0	0	1	0	1	0	381
1	1	0	1	0	0	0	1	1	1	0	0	1	0	1	0	424
1	1	0	0	1	0	1	1	1	1	0	0	1	0	0	1	615
1	0	1	0	1	1	1	0	1	1	0	0	1	0	1	0	477
1	0	1	0	0	0	0	1	1	0	0	1	1	1	0	0	263
1	0	0	0	0	0	1	1	1	0	0	1	1	1	0	0	272
1	1	1	1	0	0	0	1	1	0	0	1	1	1	0	0	247
1	0	0	0	0	0	0	0	1	0	1	0	1	0	0	1	612
1	0	1	1	1	0	0	0	1	0	0	1	1	0	1	0	510
1	1	1	1	0	1	1	0	1	0	1	0	1	0	0	1	555
1	1	0	0	1	0	1	1	1	0	0	1	1	1	0	0	264
1	0	1	0	0	1	1	1	1	0	0	1	1	0	0	1	576
1	0	1	0	1	0	1	1	1	0	1	0	1	1	0	0	268

	Con	figu	rati	on O	ptio	ns	T	Featur	ec							Perf. (s)
																-
x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	y_i
1	1	0	1	1	1	1	0	1	0	0	1	1	0	0	1	651
1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	0	536
1	1	1	1	0	0	0	0	1	1	0	0	1	0	0	1	581
1	0	0	0	0	0	1	0	1	1	0	0	1	0	1	0	381
1	1	0	1	0	0	0	1	1	1	0	0	1	0	1	0	424
1	1	0	0	1	0	1	1	1	1	0	0	1	0	0	1	615
1	0	1	0	1	1	1	0	1	1	0	0	1	0	1	0	477
1	0	1	0	0	0	0	1	1	0	0	1	1	1	0	0	263
1	0	0	0	0	0	1	1	1	0	0	1	1	1	0	0	272
1	1	1	1	0	0	0	1	1	0	0	1	1	1	0	0	247
1	0	0	0	0	0	0	0	1	0	1	0	1	0	0	1	612
1		1	1	1	0	0	0	1	0	0	1	1	0	1	0	510
Cor	ıfigu	Irati	Lon	0	1	1	0	1	0	1	0	1	0	0	1	555
1	1	0	0	1	0	1	1	1	0	0	1	1	1	0	0	264
1	0	1	0	0	1	1	1	1	0	0	1	1	0	0	1	576
1	0	1	0	1	0	1	1	1	0	1	0	1	1	0	0	268

	Con	figu	rati	on O	ptio	ns	I	Featur	es							Perf. (s)
x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	y_i
1	1	0	T	1	1	1	0	1	0	0	1	1	0	0	1	651
1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	0	536
1	1	1	1	0	0	0	0	1	1	0	0	1	0	0	1	581
1	0	0	0	0	0	1	0	1	1	0	0	1	0	1	0	381
1	1	0	1	0	0	0	1	1	1	0	0	1	0	1	0	424
1	1	0	0	1	0	1	1	1	1	0	0	1	0	0	1	615
1	0	1	0	1	1	1	0	1	1	0	0	1	0	1	0	477
1	0	1	0	0	0	0	1	1	0	0	1	1	1	0	0	263
1	0	0	0	0	0	1	1	1	0	0	1	1	1	0	0	272
1	1	1	1	0	0	0	1	1	0	0	1	1	1	0	0	247
1	0	0	0	0	0	0	0	1	0	1	0	1	0	0	1	612
1	0	1	1	1	0	0	0	1	0	0	1	1	0	1	0	510
Cor	nfigu	Irati	lon	0	1	1	0	1	0	1	0	1	0	0		erformand
1	1	0	0	1	0	1	1	1	0	0	1	1	1	0	0	264
1	0	1	0	0	1	1	1	1	0	0	1	1	0	0	1	576
1	0	1	0	1	0	1	1	1	0	1	0	1	1	0	0	268

	Con	figu	rati	on O	ptio	ns	I	Featur	es							Perf. (s)
x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	y_i
1	1	0	T	1	1	1	0	1	0	0	1	1	0	0	1	651
1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	0	536
1	1	1	1	0	0	0	0	1	1	0	0	1	0	0	1	581
1	0	0	0	0	0	1	0	1	1	0	0	1	0	1	0	381
1	1	0	1	0	0	0	1	1	1	0	0	1	0	1	0	424
1	1	0	0	1	0	1	1	1	1	0	0	1	0	0	1	615
1	0	1	0	1	1	1	0	1	1	0	0	1	0	1	0	477
1	0	1	0	0	0	0	1	1	0	0	1	1	1	0	0	263
	otima		bLut	10 N	0	1	1	1	0	0	1	1	1	0	0	272
1	1	1	1	0	0	0	1	1	0	0	1	1	1	0	0	247
1	0	0	0	0	0	0	0	1	0	1	0	1	0	0	1	612
		1	1	1	0	0	0	1	0	0	1	1	0	1	C	510
	nfigu		LON	0	1	1	0	1	0	1	0	1	0	0		erformanc
1	1	0	0	1	0	1	1	1	0	0	1	1	1	0	0	264
1	0	1	0	0	1	1	1	1	0	0	1	1	0	0	1	576
1	0	1	0	1	0	1	1	1	0	1	0	1	1	0	0	268

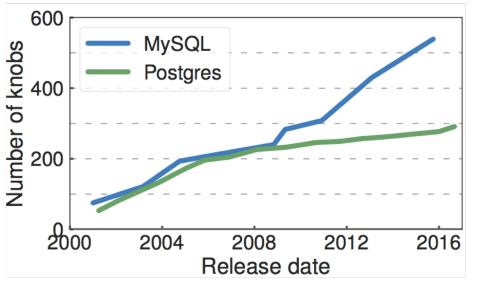




200 new configuration options added to Apache HTTP server between 2010 and 2014^[1]

Necessary

Complex



250 new configuration options added to MySQL between 2012 and 2016^[2]

[1] Xu et. al.; Hey, you have given me too many knobs!: understanding and dealing with over-designed configuration in system software; FSE 2015¹⁹
 [2] Van Aken, Dana, et al. "Automatic Database Management System Tuning Through Large-scale Machine Learning." ICMD 2017.

Default MySQL configuration in 2016 assumes that machine has only 160 MB of RAM^[1]

Rule-of-thumb settings for WordCount (in Hadoop) gave one of its Worst execution times^[2]

Necessary

Complex

Default is not good

[1] Van Aken, Dana, et al. "Automatic Database Management System Tuning Through Large-scale Machine Learning." International Conference on Management of Data. ACM, 2017.
[2] Herodotou, Herodotos, et al. "Starfish: A Self-tuning System for Big Data Analytics." CIDR

- Evaluation of single instance of software/hardware co-design problem can take Weeks^[1]
- Rolling Sort use-case required 21 days, within a total experimental time of about 2.5 months^[2]
- Test suite generation using Evolutionary Algorithm can take Weeks^[3]

Necessary

Complex

Default is not good

Expensive

[1] Zuluaga, Marcela, et al. "Active learning for multi-objective optimization." International Conference on Machine Learning. 2013.
 [2] Jamshidi, Pooyan, and Giuliano Casale. "An uncertainty-aware approach to optimal configuration of stream processing systems." MASCOTS-2016
 [3] Wang, Tiantian, et al. "Searching for better configurations: a rigorous approach to clone evaluation." FSE-2013

Cloud Computing

•<u>Ernest</u> •<u>Cherrypick</u> •<u>PARIS</u>

Database

•<u>Otter-tune</u> •<u>Ituned</u> Necessary

Complex

Default is not good

Machine Learning

•<u>Hyperparameter</u> <u>Tuning</u> •<u>Random search</u> •<u>SMBO</u>

•Fabolas

Software Engineering

<u>Tuning or Default Values?</u>
<u>Tuning for Software Analytics</u>
<u>Tuning for Defect Prediction</u>
<u>Topic Modelling</u>

Expensive

Ubiquitous

Cloud Computing

•<u>Ernest</u> •<u>Cherrypick</u> •<u>PARIS</u>

Database

•<u>Otter-tune</u> •<u>Ituned</u> Necessary

Complex

Default is not good

Machine Learning

•<u>Hyperparameter</u> <u>Tuning</u> •<u>Random search</u> •<u>SMBO</u>

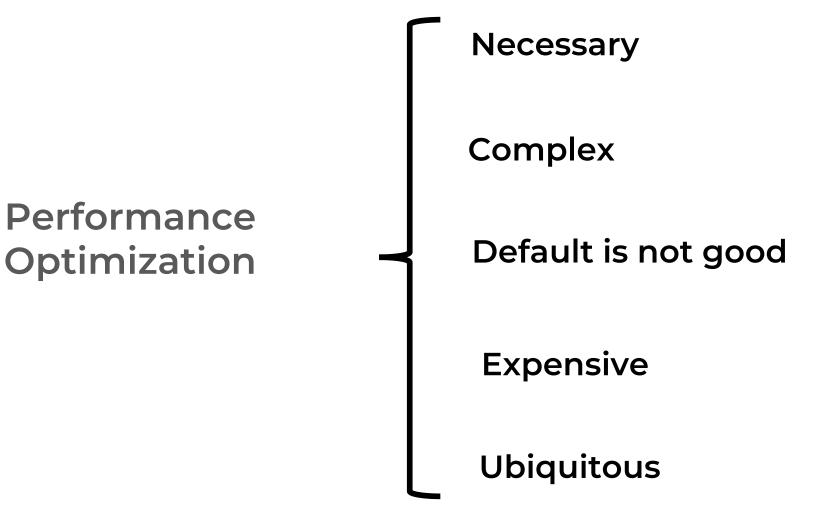
•<u>Fabolas</u>

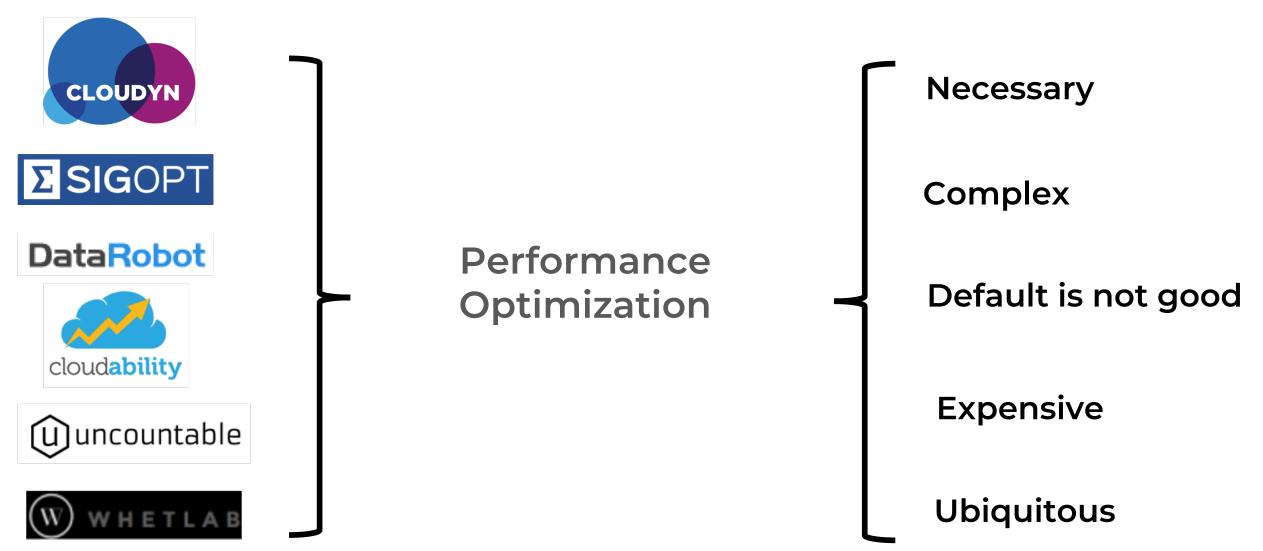
Software Engineering

<u>Tuning or Default Values?</u>
<u>Tuning for Software Analytics</u>
<u>Tuning for Defect Prediction</u>
<u>Topic Modelling</u>

Expensive

Ubiquitous





- Optimization is ubiquitous and expensive

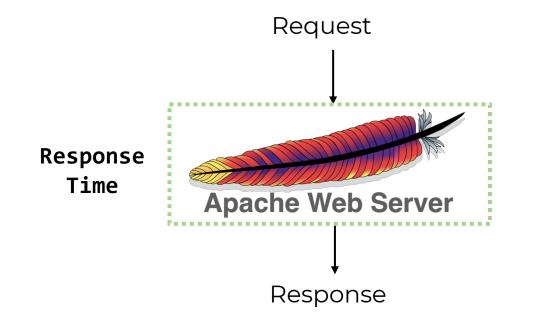
- The Model-based optimization is a popular alternative

Claim: Better ways to build and use <u>Models</u>

Case Study: Configurable Software System Optimization

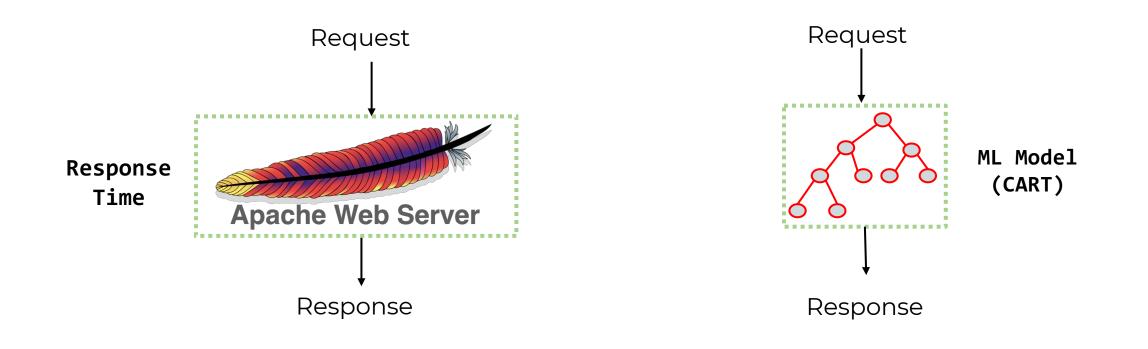
Potential future application: Any optimization problem

Previously on Performance Optimization [1][2] Residual based Methods



Residual-based Method

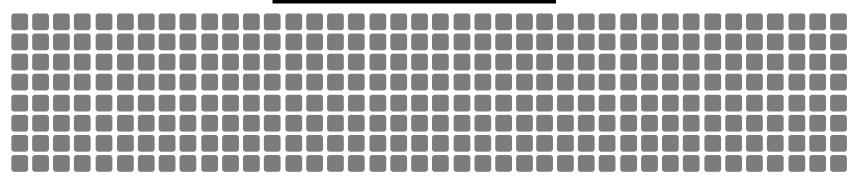
Previously...

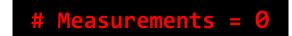


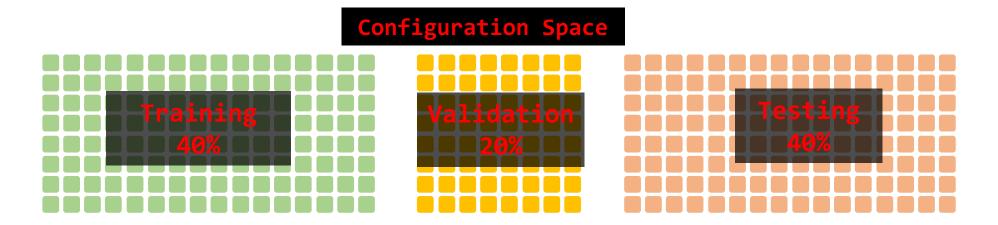
Residual-based Method

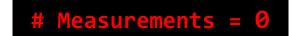
Previously...

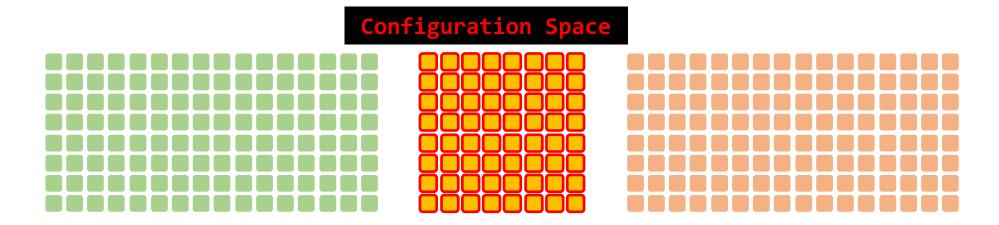
Configuration Space

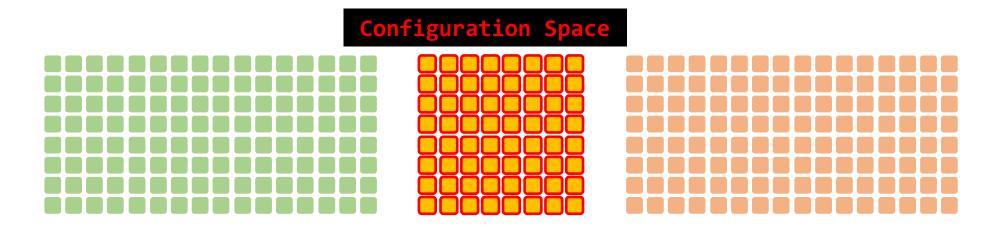


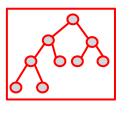






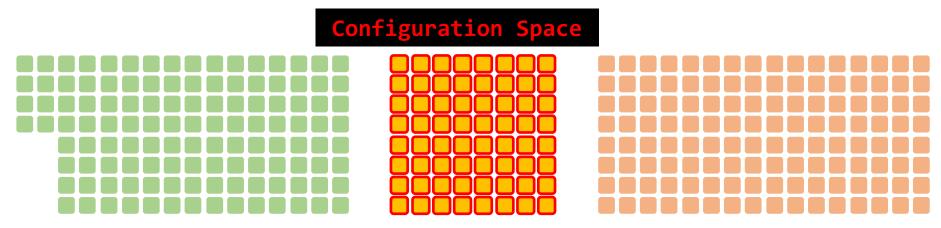






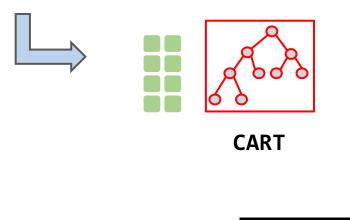
CART

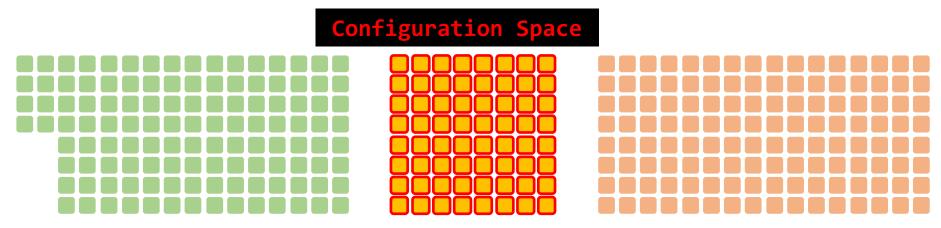
Measurements = 64



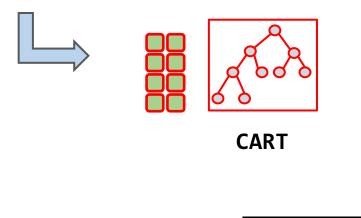
Measurements = 64

Random Sampling

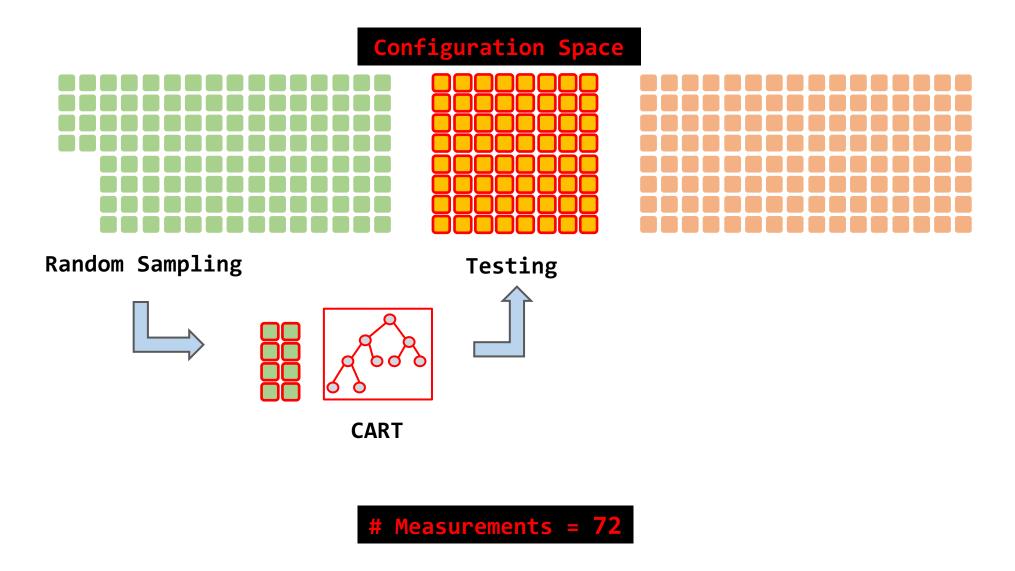


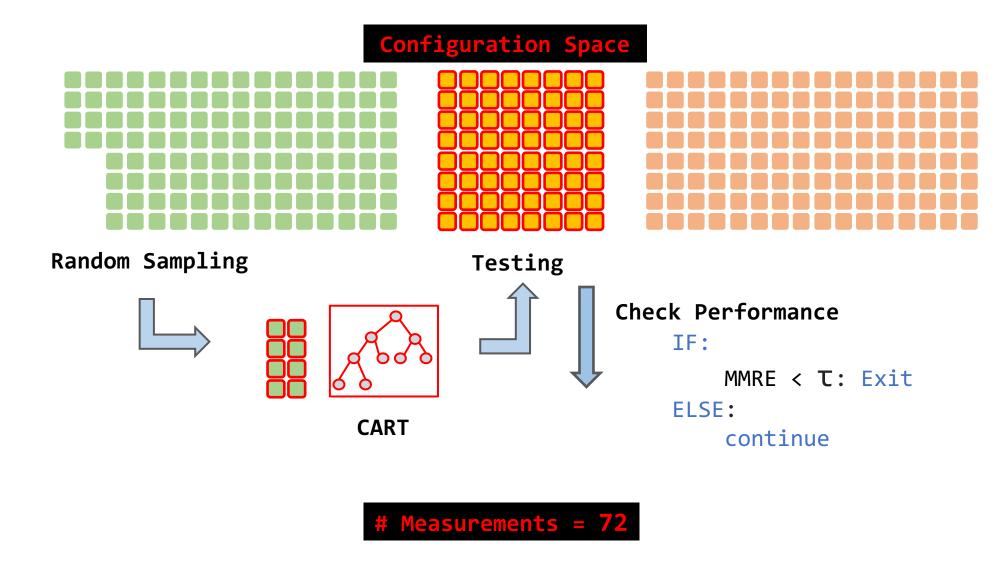


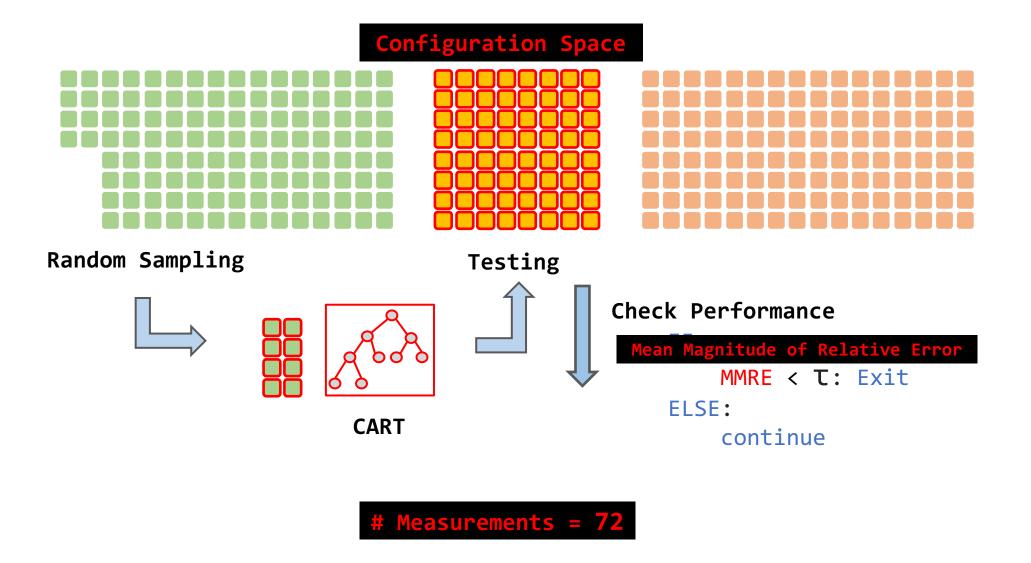
Random Sampling

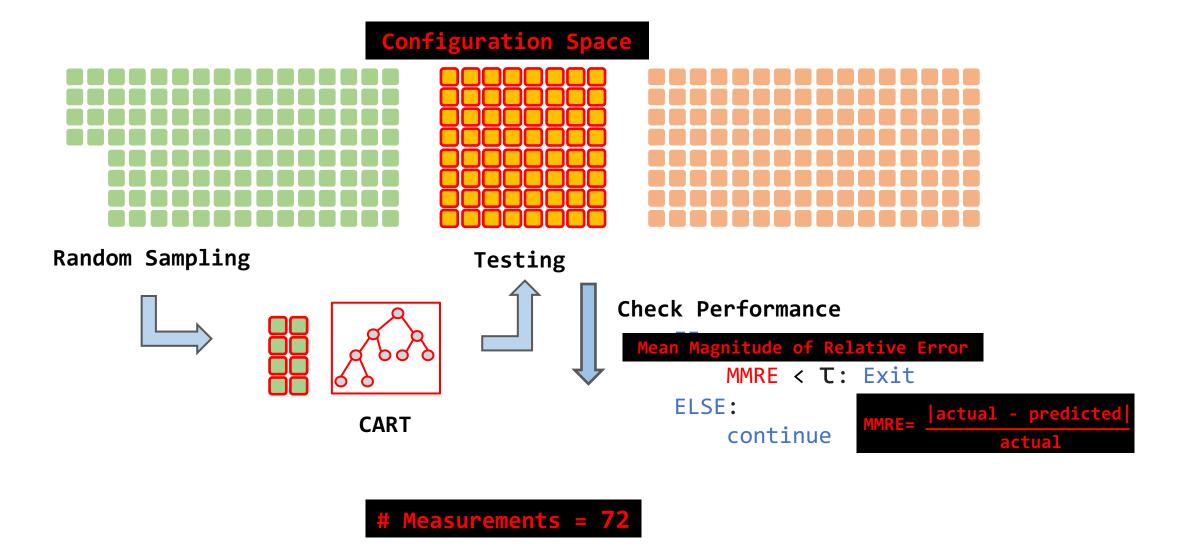


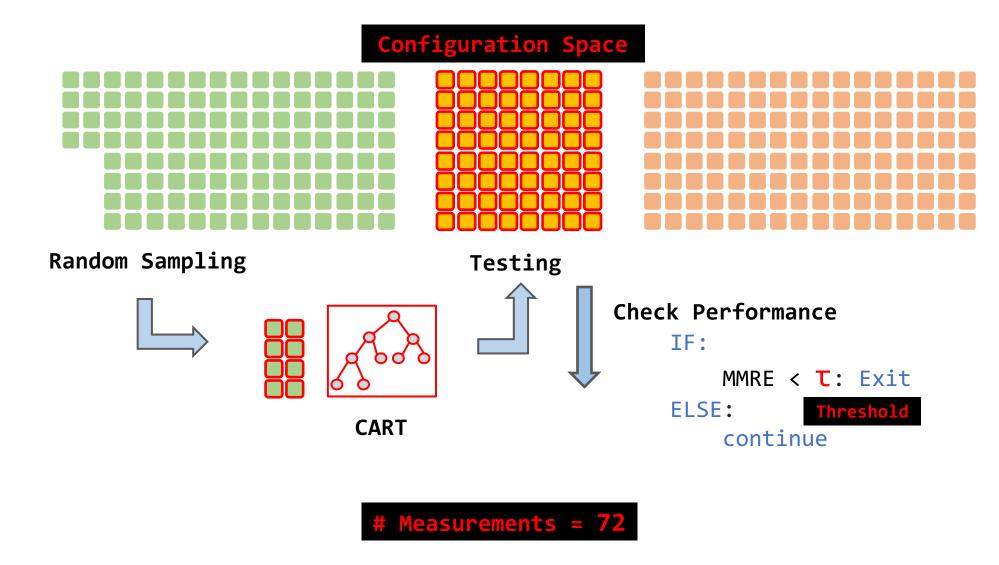
Measurements = 72

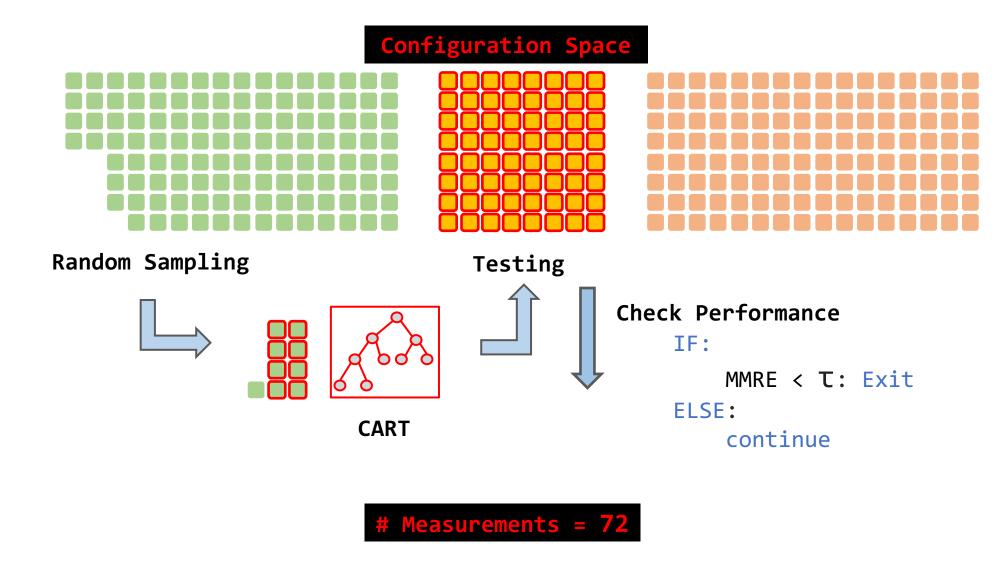


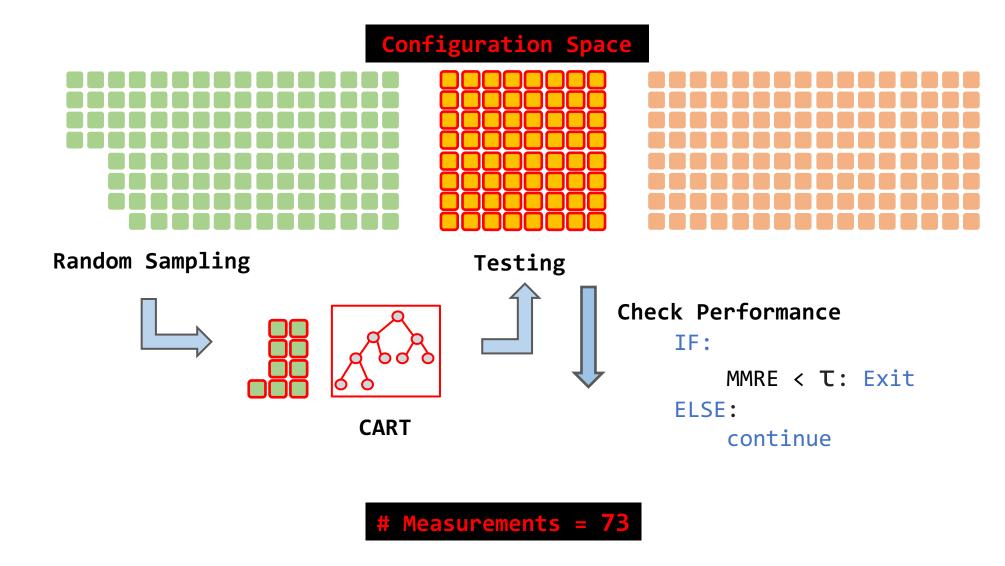


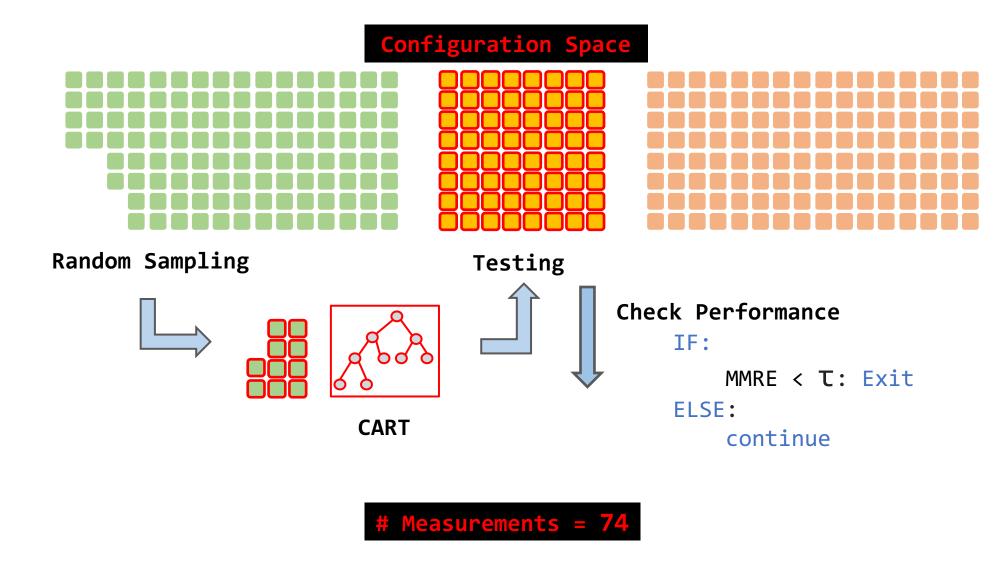


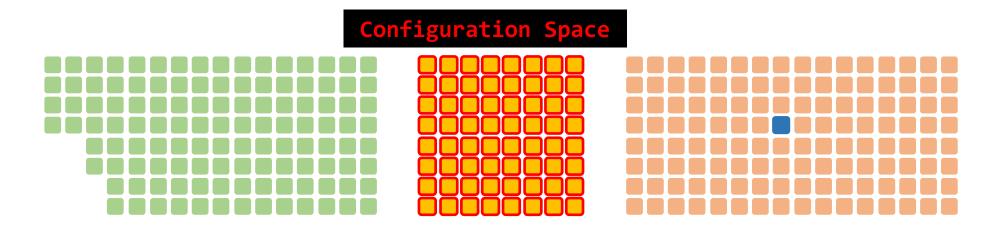


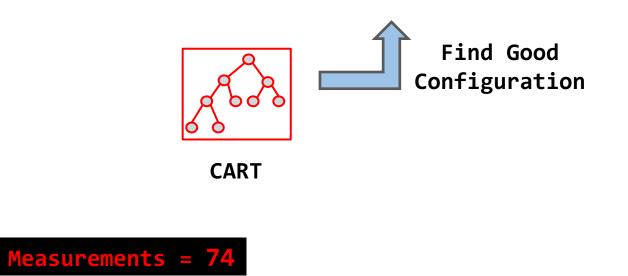


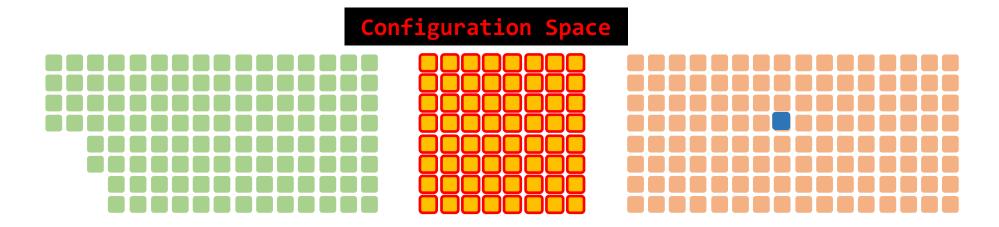


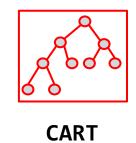


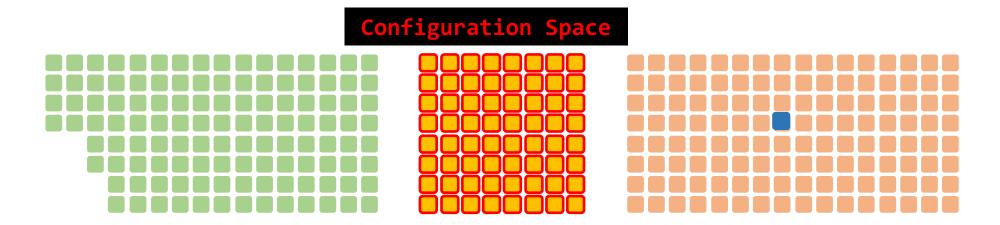


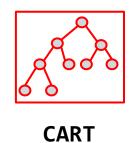




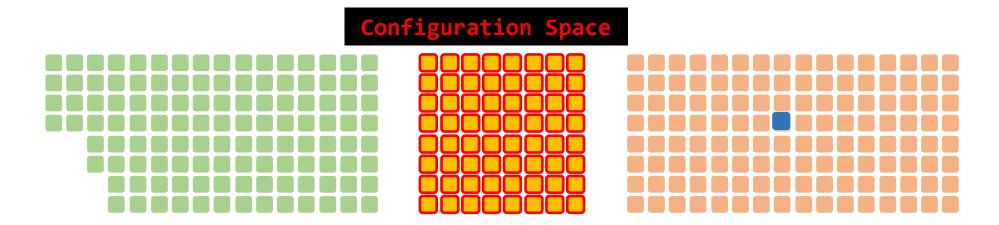


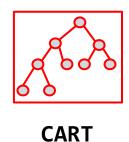




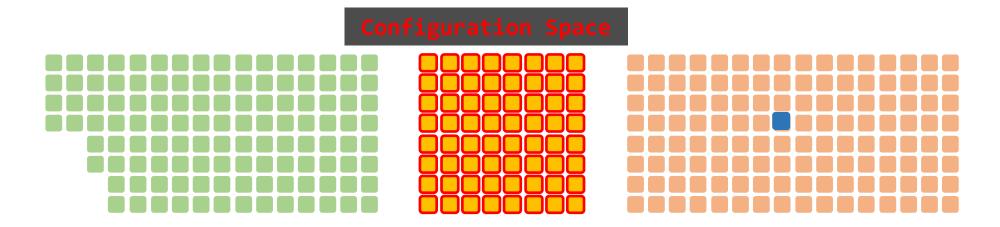


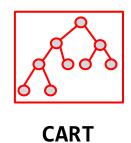
How close is the predicted optimal from actual optimal?

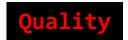




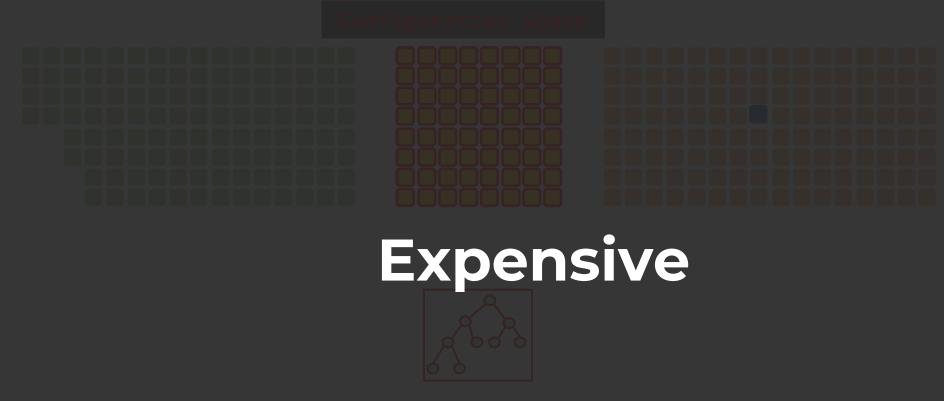
ity How close is the predicted optimal from actual optimal?







How close is the predicted optimal from actual optimal?



Regression Tree

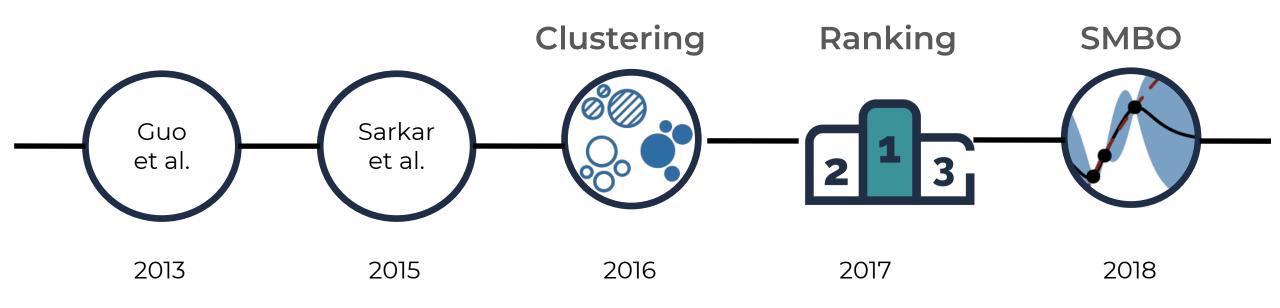
Quality How close is the predicted optimal from actual optimal?

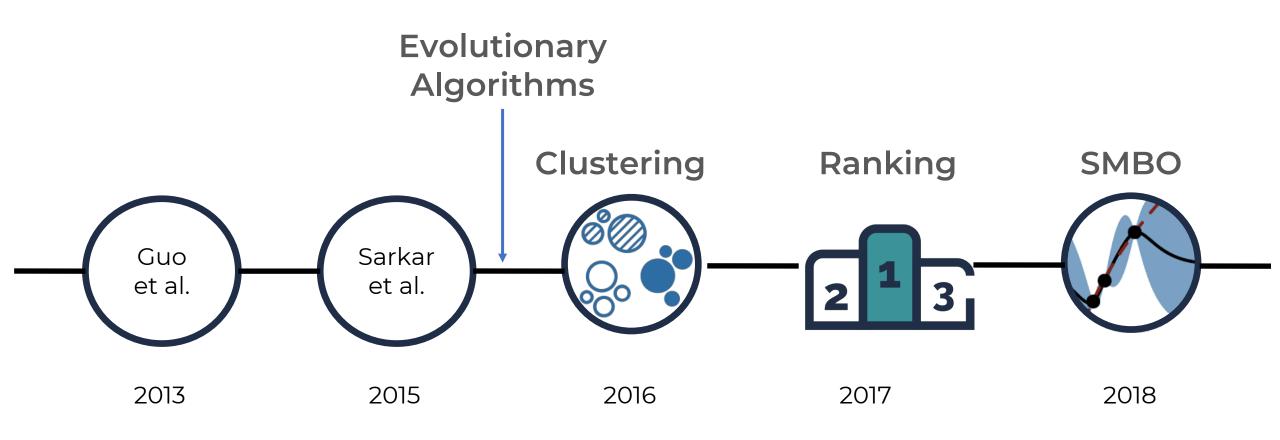
Cost

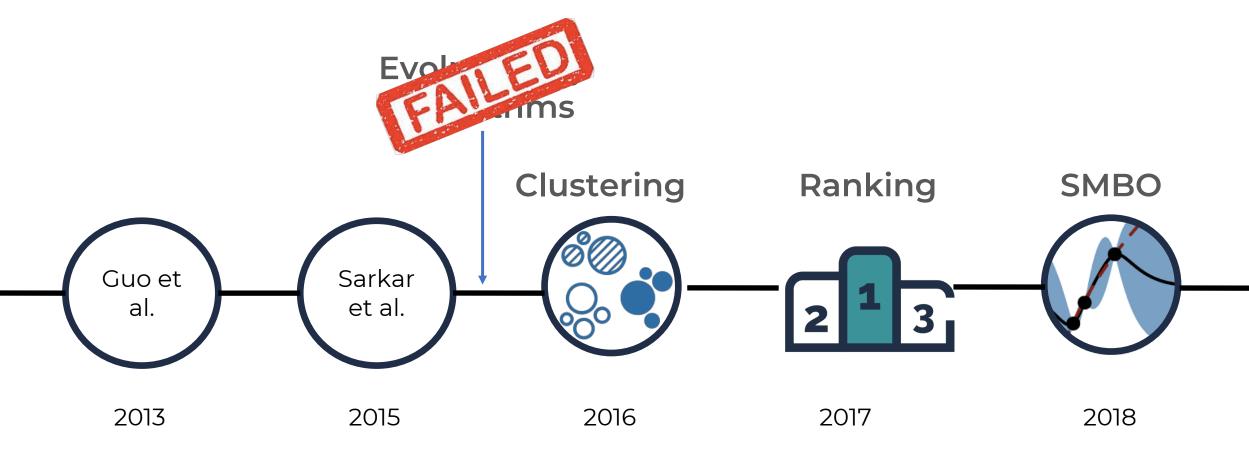
"..in real world scenarios, the cost of acquiring the optimal configuration is overly expensive and time consuming.." - Gary M Weiss and Ye Tian

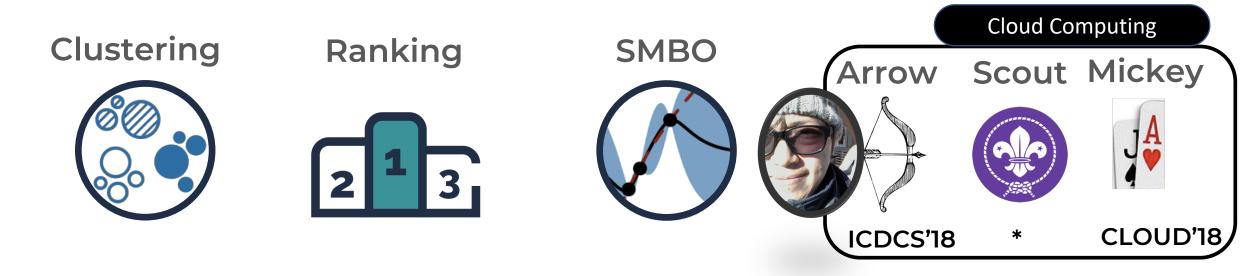
Gary M Weiss and Ye Tian. Maximizing classifier utility when there are data acquisition and modeling costs. Data Mining and Knowledge Discovery, 17(2):253–282, 2008.

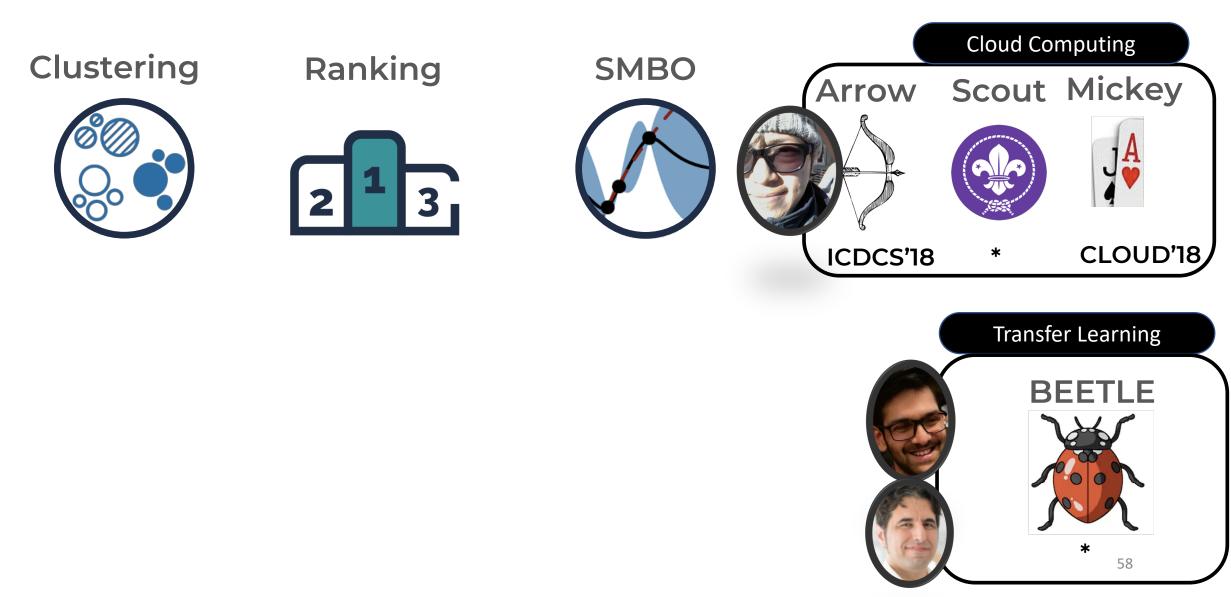
"..in real world scenarios, the cost of acquiring the optimal configuration is overly expensive and time consuming.." - Gary M Weiss and Ye Tian

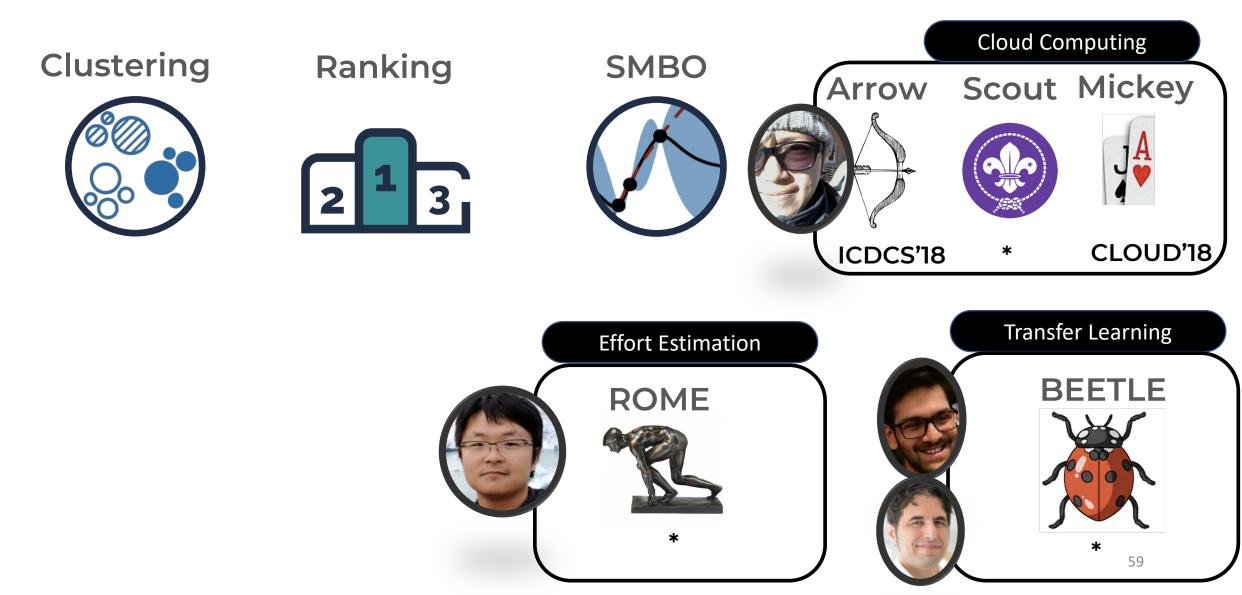






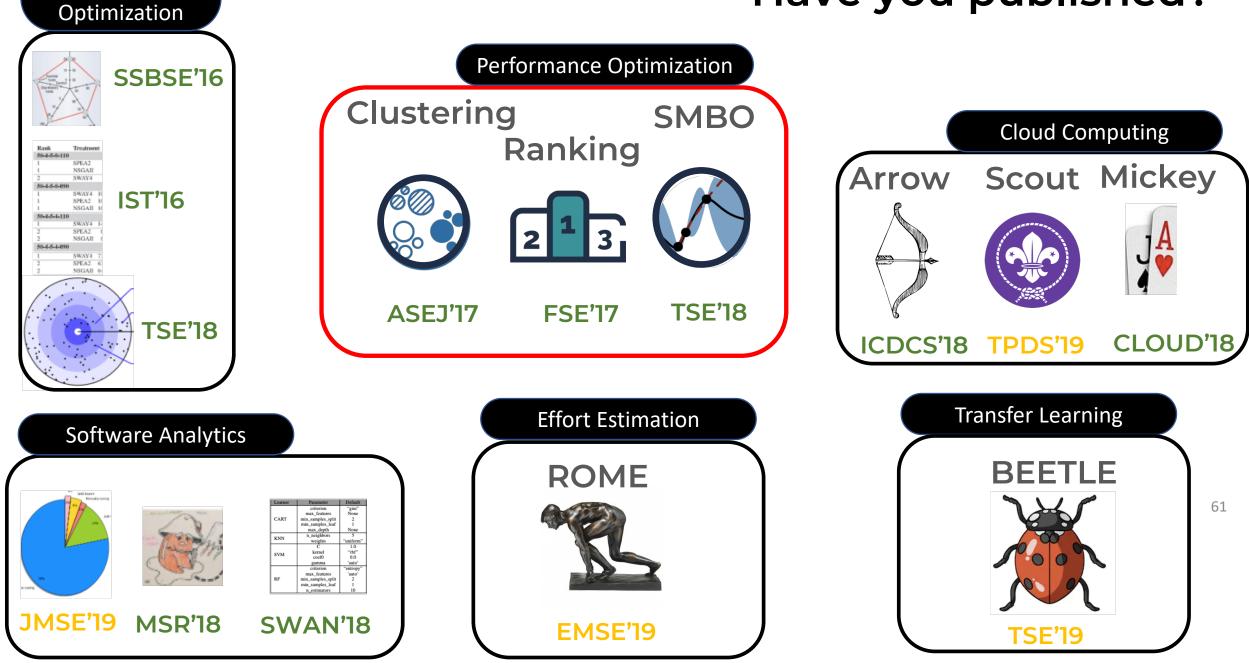






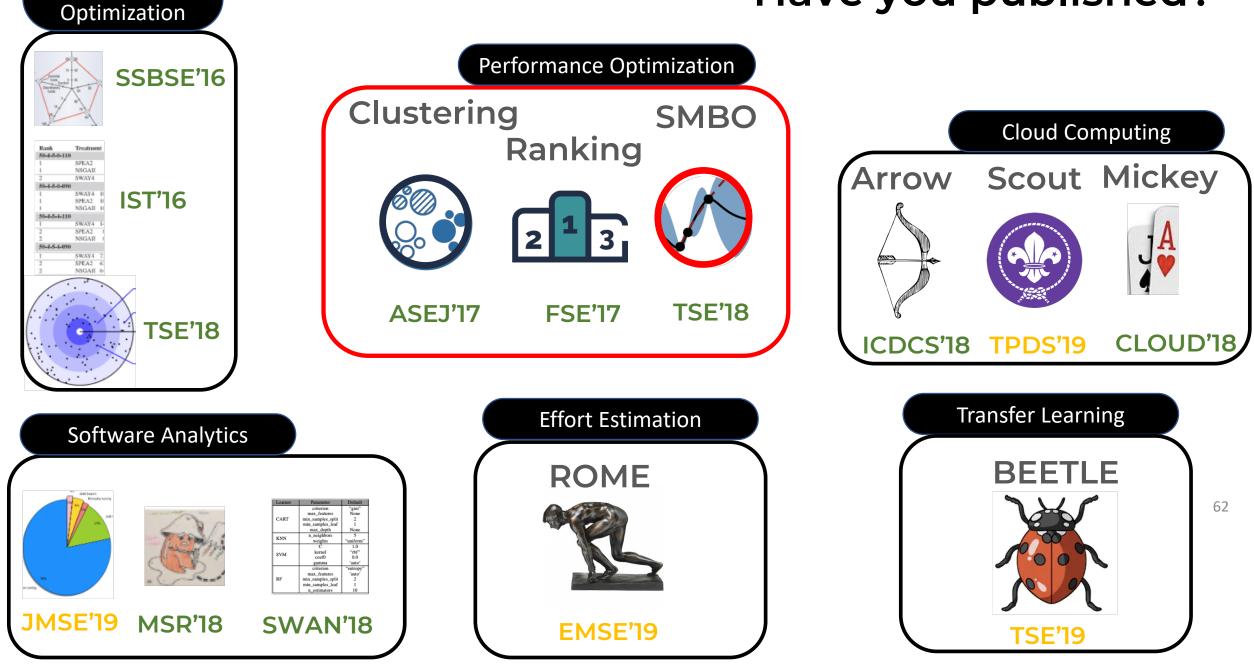
Have you published? General Optimization Performance Optimization SSBSE'16 Clustering **SMBO Cloud Computing** Treatme Rank Ranking 50-4-5-0-110 SPEA2 Scout Mickey NSGAII Arrow SWAY4 **IST'16** SWAY4 SPEA2 NSGAIL SWAVA SPEA2 NSGAIL 3 2 SWAY-SPEA2 **TSE'18 FSE'17 ASEJ'17 TSE'18** CLOUD'18 ICDCS'18 **TPDS'19 Transfer Learning Effort Estimation** Software Analytics BEETLE ROME 60 criterion max_features max_reatures min_samples_split min_samples_leaf max_depth n_neighbors CART KNN kernel coef0 gamma criterion max_features min_samples_split min_samples_leaf **JMSE'19 MSR'18** SWAN'18 **EMSE'19 TSE'19**

Have you published?



General

Have you published?



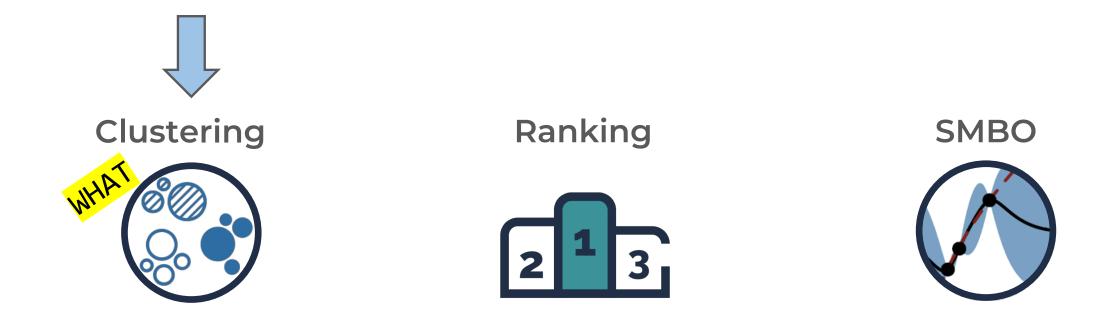
General

Clustering

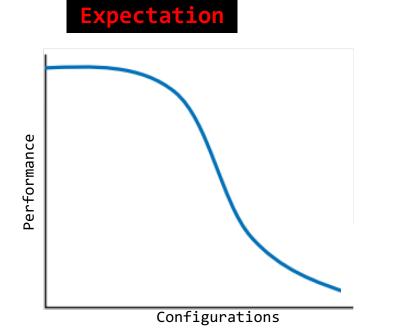
Ranking

SMBO

Presented during Written Prelims

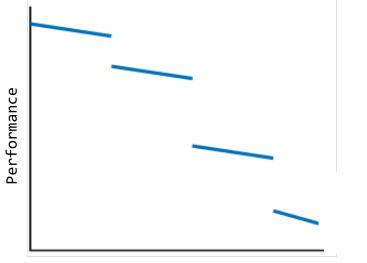


Nair et al.; Faster discovery of faster system configurations with spectral learning; ASEJ (2016)



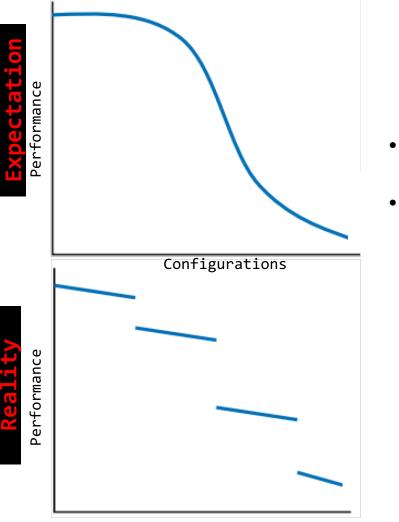
Oh, J., Batory, D., Myers, M., & Siegmund, N. (2017, August). Finding near-optimal configurations in product lines by random sampling. *Foundations of Software Engineering*(pp. 61-71). ACM. 66





Configurations

Oh, J., Batory, D., Myers, M., & Siegmund, N. (2017, August). Finding near-optimal configurations in product lines by random sampling. *Foundations of Software Engineering*(pp. 61-71). ACM. 67

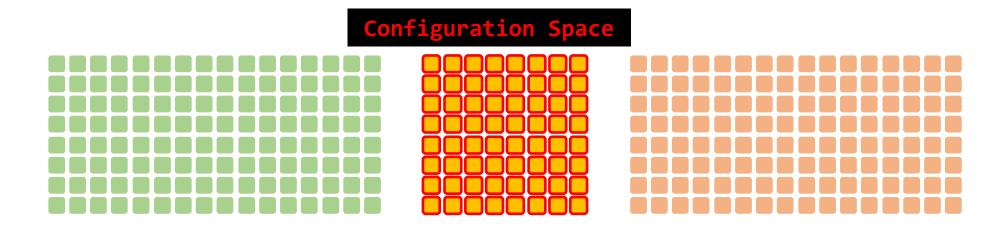


Configurations

Oh, J., Batory, D., Myers, M., & Siegmund, N. (2017, August). Finding near-optimal configurations in product lines by random sampling. *Foundations of Software Engineering*(pp. 61-71). ACM. 68

- Most of the configuration options does not affect the performance
- First Cluster then Sample

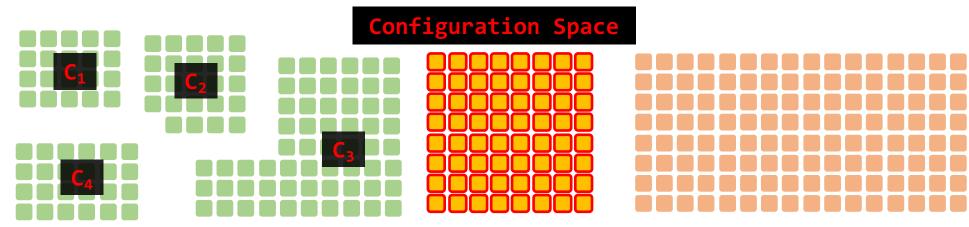
WHAT



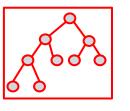
CART

Measurements = 64

WHAT



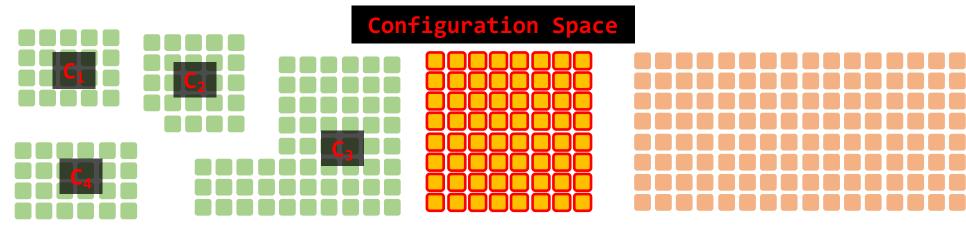
Clustering



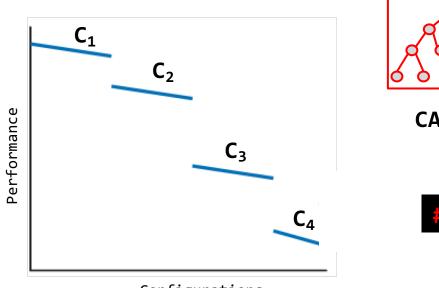
CART

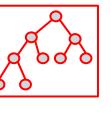
Measurements = 64

WHAT



Clustering



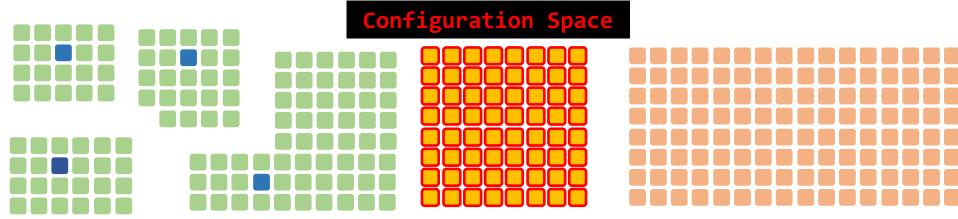


CART

Measurements = 64

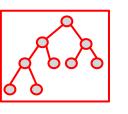
Configurations

WHAT



Clustering

+ Sampling Policies

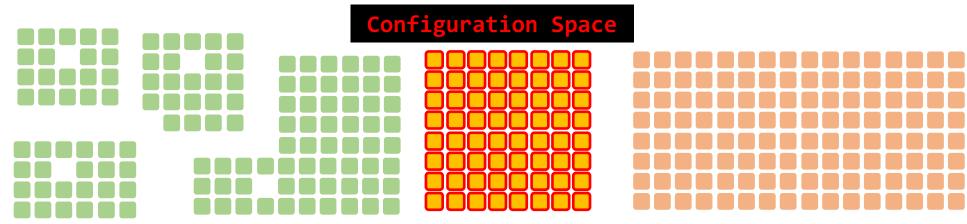


CART

Measurements = 64

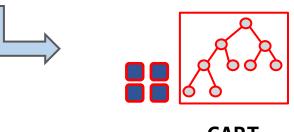
WHAT (Clustering)

WHAT



Clustering

+ Sampling Policies

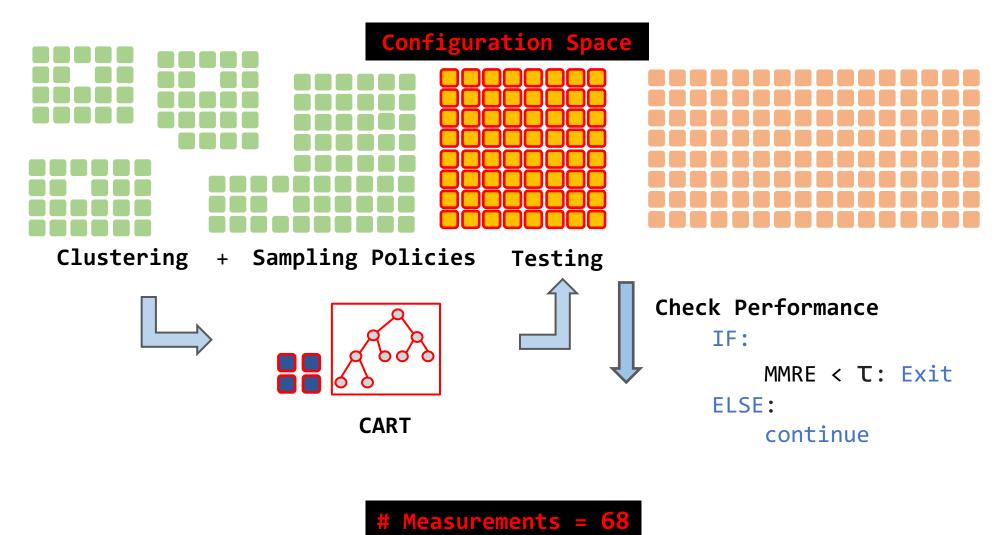


CART



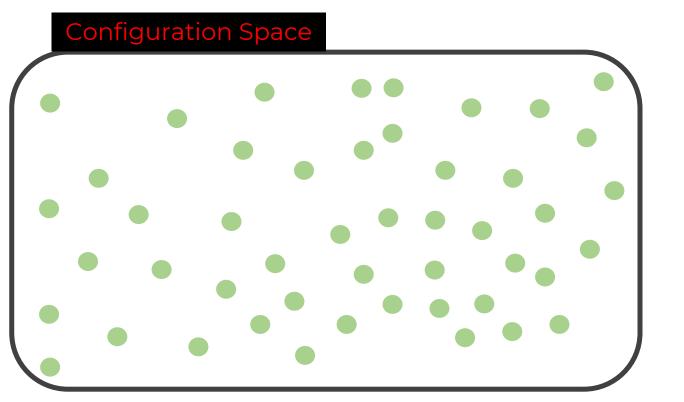
WHAT (Clustering)

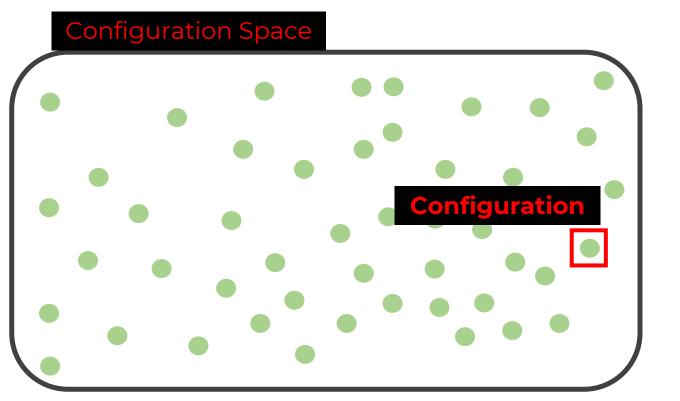
Previously?



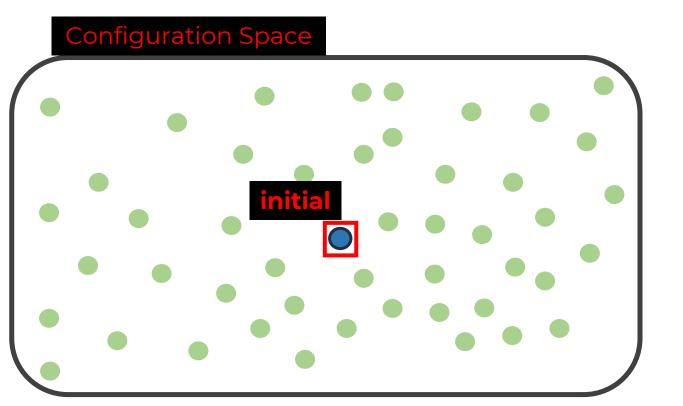
Configuration Space

75



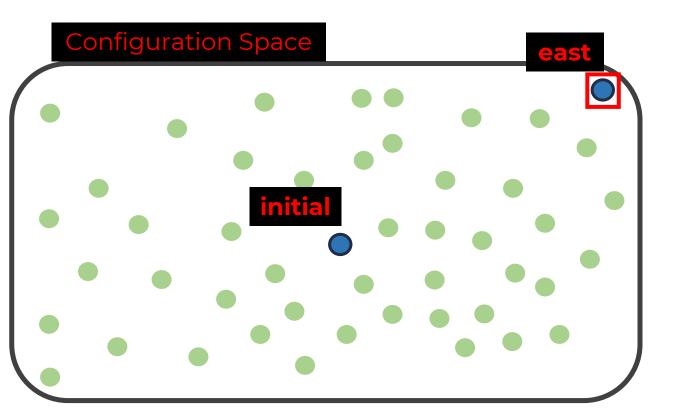


1. Select random configuration (initial)

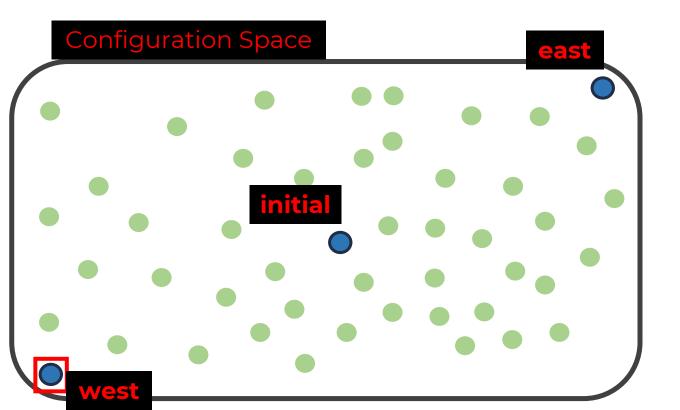


1. Select random configuration (initial)

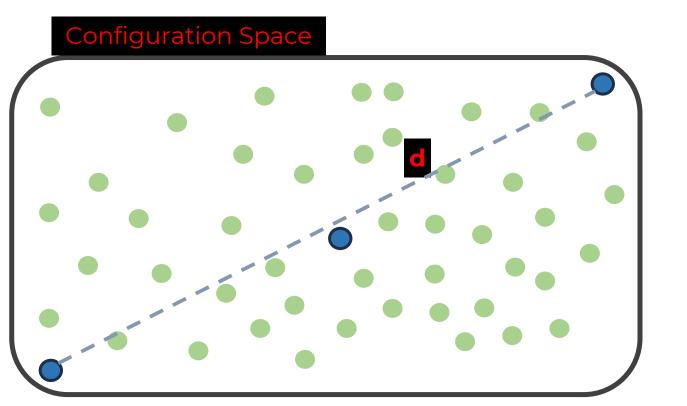
2. Find furthest point (east)



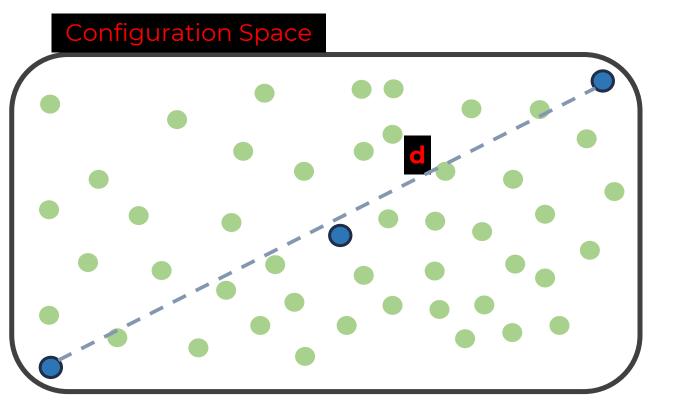
- 1. Select random configuration (initial)
- 2. Find furthest point (east)
- 3. Find furthest point from east (west)

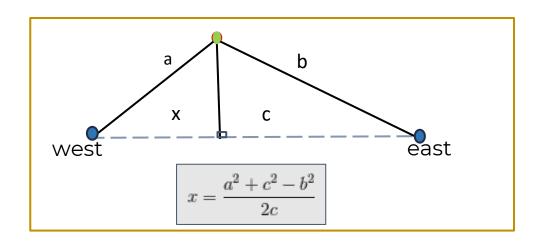


- 1. Select random configuration (initial)
- 2. Find furthest point (east)
- 3. Find furthest point from east (west)
- 4. Connect east and west (d)

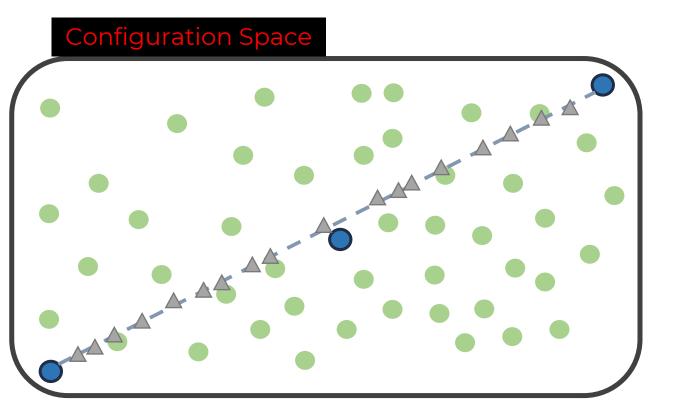


- 1. Select random configuration (initial)
- 2. Find furthest point (east)
- 3. Find furthest point from east (west)
- 4. Connect east and west (d)
- 5. Projects configurations to d
 - a) For all points
 - Choose a point (candidate)
 - Calculate position on d

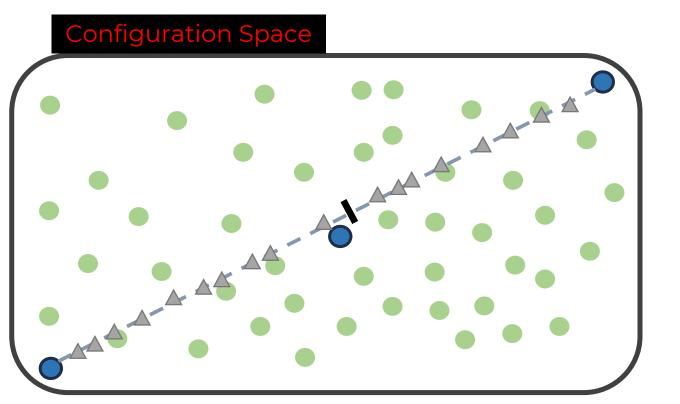




- 1. Select random configuration (initial)
- 2. Find furthest point (east)
- 3. Find furthest point from east (west)
- 4. Connect east and west (d)
- 5. Projects configurations to d
 - a) For all points
 - Choose a point (candidate)
 - Calculate position on d

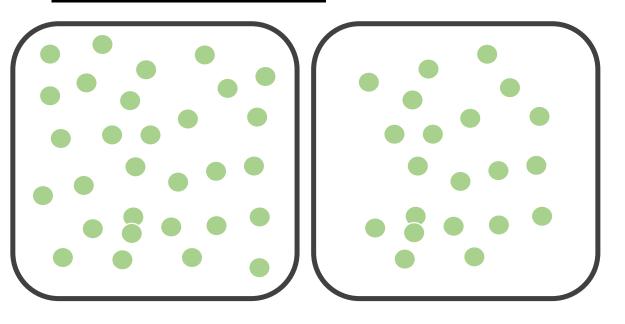


- 1. Select random configuration (initial)
- 2. Find furthest point (east)
- 3. Find furthest point from east (west)
- 4. Connect east and west (d)
- 5. Projects configurations to d
 - a) For all points
 - Choose a point (candidate)
 - □ Calculate position on d
- 6. Split at median of d

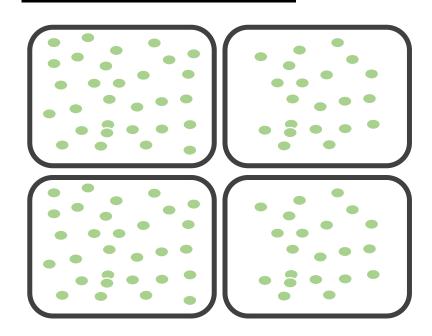


- 1. Select random configuration (initial)
- 2. Find furthest point (east)
- 3. Find furthest point from east (west)
- 4. Connect east and west (d)
- 5. Projects configurations to d
 - a) For all points
 - Choose a point (candidate)
 - Calculate position on d
- 6. Split at median of d

Configuration Space

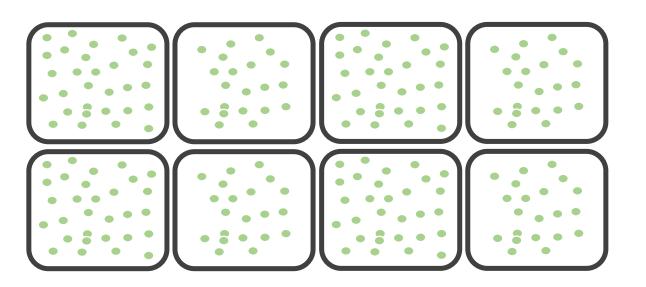


Configuration Space



- 1. Select random configuration (initial)
- 2. Find furthest point (east)
- 3. Find furthest point from east (west)
- 4. Connect east and west (d)
- 5. Projects configurations to d
 - a) For all points
 - Choose a point (candidate)
 - Calculate position on d
- 6. Split at median of d
- 7. Recurse

Configuration Space



- 1. Select random configuration (initial)
- 2. Find furthest point (east)
- 3. Find furthest point from east (west)
- 4. Connect east and west (d)
- 5. Projects configurations to d
 - a) For all points
 - Choose a point (candidate)
 - Calculate position on d
- 6. Split at median of d
- 7. Recurse
- 8. Stop when **|n| < sqrt(N)**

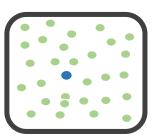
WHAT (Clustering)

How to Cluster?

- 1. Select random configuration (initial)
- 2. Find furthest point (east)
- 3. Find furthest point from east (west)
- 4. Connect east and west (d)
- 5. Projects configurations to d
 - a) For all points
 - Choose a point (candidate)
 - Calculate position on d
- 6. Split at median of d
- 7. Recurse
- 8. Stop when |n| < sqrt(N)

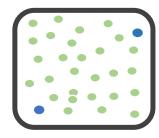
Sampling Policies

- Random
 - Choose a candidate at random
 - Number of evaluations/Cluster = 1
 - Point selected/Cluster = 1

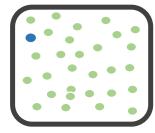


• East-West

- Choose extreme points in dimension of maximum variance
- Number of evaluations/Cluster = 2
- Point selected/Cluster = 2



- Exemplar
 - Choose the best candidate from the cluster
 - Number of evaluations/Cluster = n
 - Point selected/Cluster = 1



WHAT (Clustering)

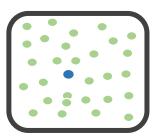
How to Cluster?

- 1. Select random configuration (initial)
- 2. Find furthest point (east)
- 3. Find furthest point from east (west)
- 4. Connect east and west (d)
- 5. Projects configurations to d
 - a) For all points
 - Choose a point (candidate)
 - Calculate position on d
- 6. Split at median of d
- 7. Recurse
- 8. Stop when |n| < sqrt(N)

Sampling Policies

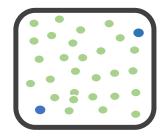
• Random

- Choose a candidate at random
- Number of evaluations/Cluster = 1
- Point selected/Cluster = 1

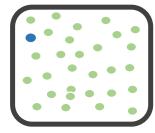


• East-West

- Choose extreme points in dimension of maximum variance
- Number of evaluations/Cluster = 2
- Point selected/Cluster = 2



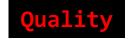
- Exemplar
 - Choose the best candidate from the cluster
 - Number of evaluations/Cluster = n
 - Point selected/Cluster = 1



Summary

- WHAT can generate good predictions using only a small number of configurations
- WHAT can build "good" models which can be used in optimizers
- WHAT is comparable to the state of the art predictors

- WHAT can generate good predictions using only a small number of configurations
- WHAT can build "good" models which can be used in optimizers
- WHAT is comparable to the state of the art predictors



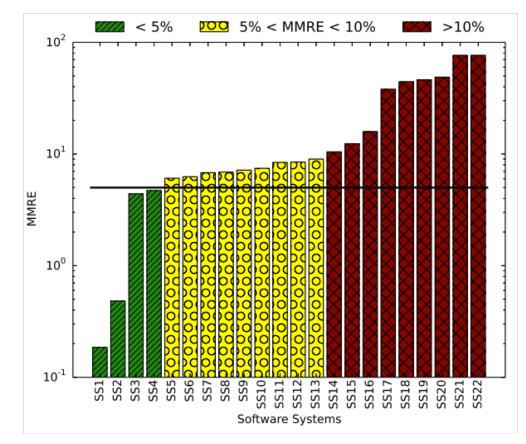
WHAT is close to the actual optimal

Cheaper than the state of the art

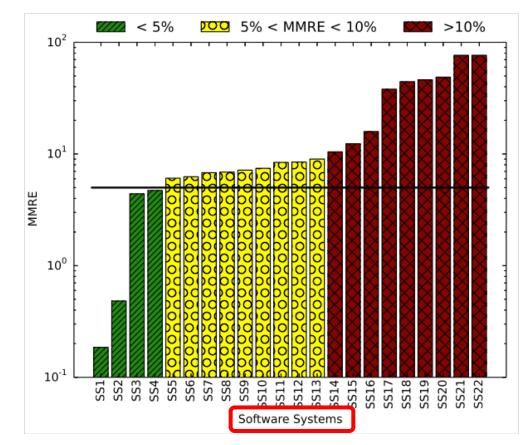
Unsupervised clustering does not work in all cases

- Only works if WHAT can generate meaningful clusters.
- Only works when an accurate model can be built
- The stopping condition or threshold (τ) is arbitrary

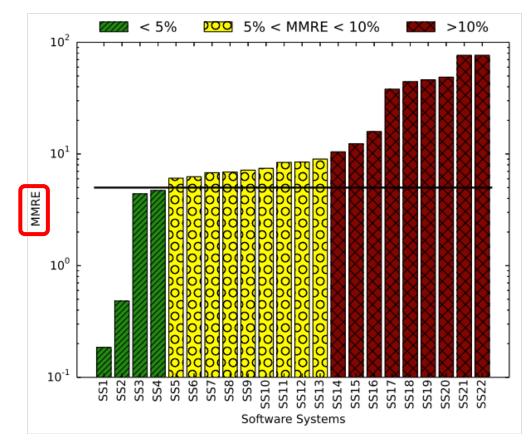
- Only works if WHAT can generate meaningful clusters.
- Only works when an accurate model can be built
- The stopping condition or threshold (τ) is arbitrary



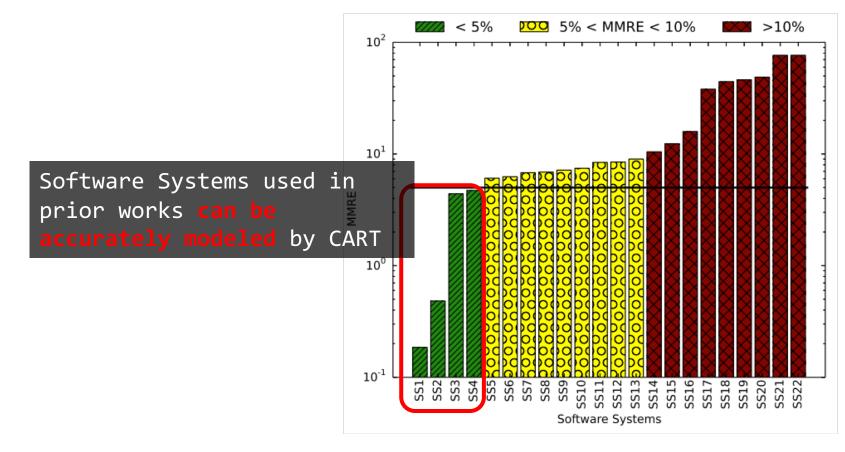
- Only works if WHAT can generate meaningful clusters.
- Only works when an accurate model can be built
- The stopping condition or threshold (τ) is arbitrary



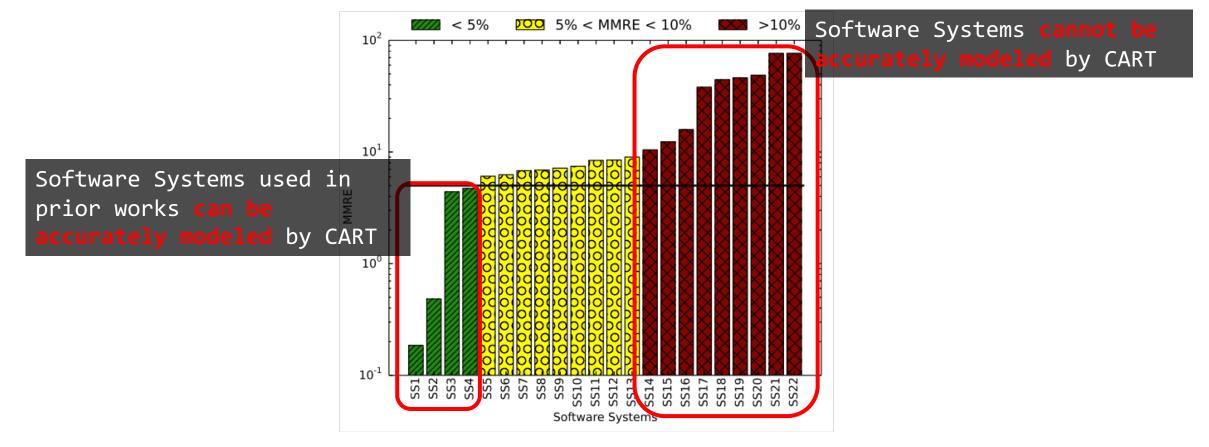
- Only works if WHAT can generate meaningful clusters.
- Only works when an accurate model can be built
- The stopping condition or threshold (τ) is arbitrary



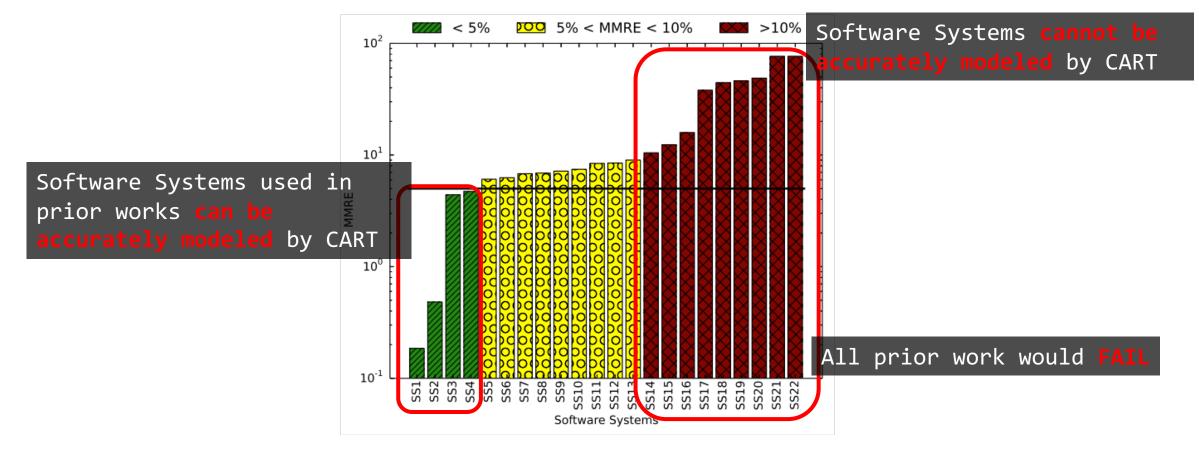
- Only works if WHAT can generate meaningful clusters.
- Only works when an accurate model can be built
- The stopping condition or threshold (τ) is arbitrary



- Only works if WHAT can generate meaningful clusters.
- Only works when an accurate model can be built
- The stopping condition or threshold (τ) is arbitrary

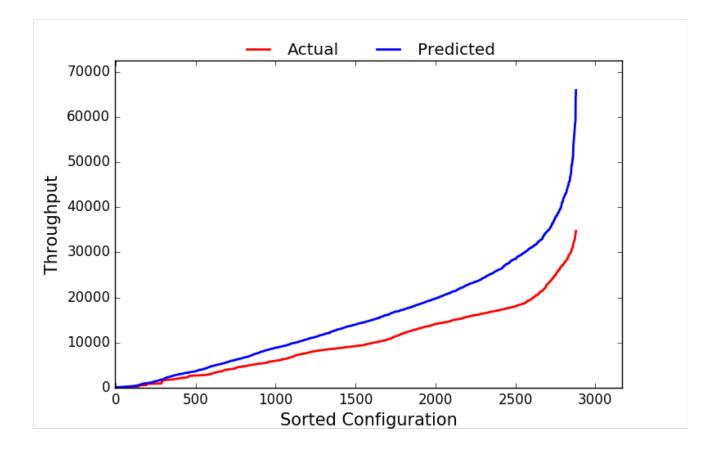


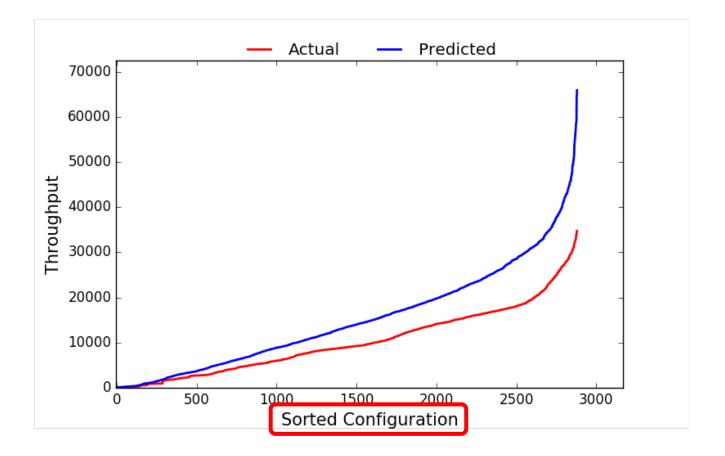
- Only works if WHAT can generate meaningful clusters.
- Only works when an accurate model can be built
- The stopping condition or threshold (τ) is arbitrary

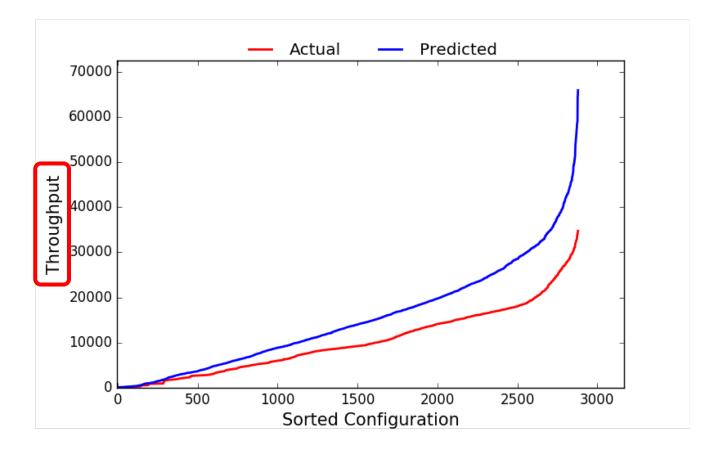


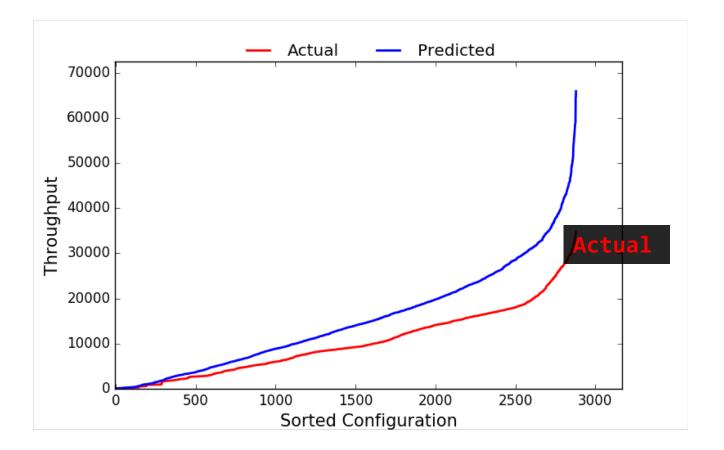
Presented during Oral Prelims

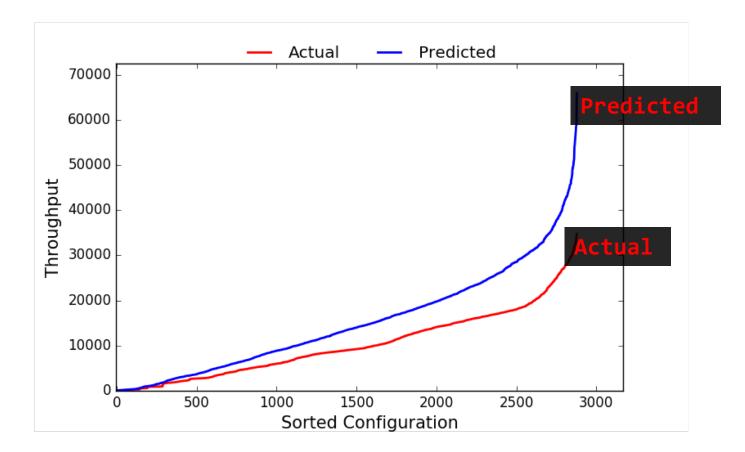
Nair et al.; Using Bad Learners to find Good Configurations; FSE (2017)

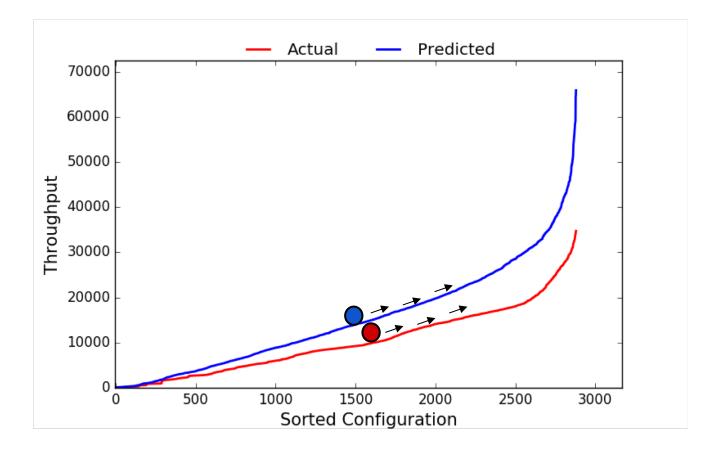




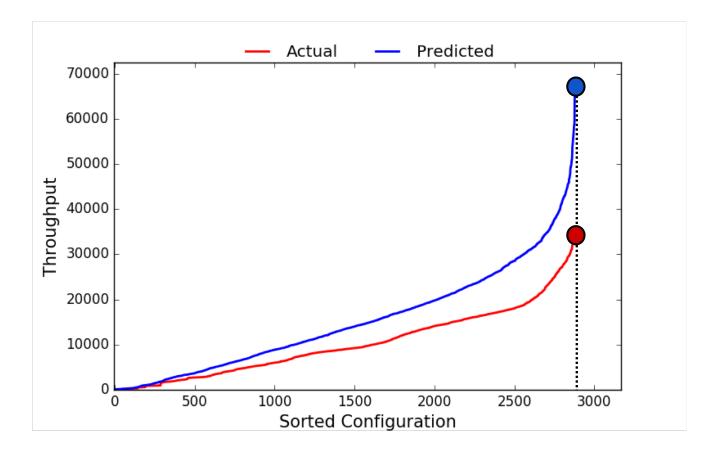




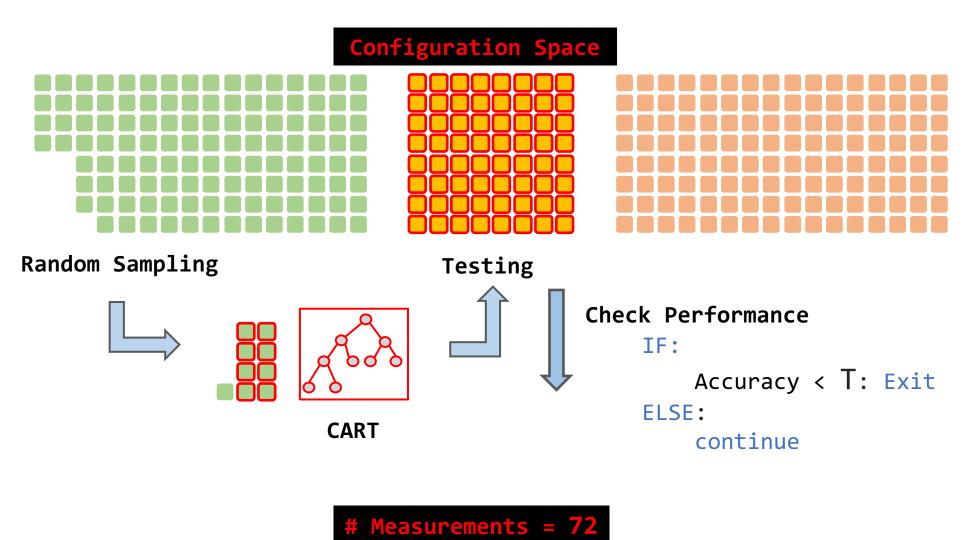


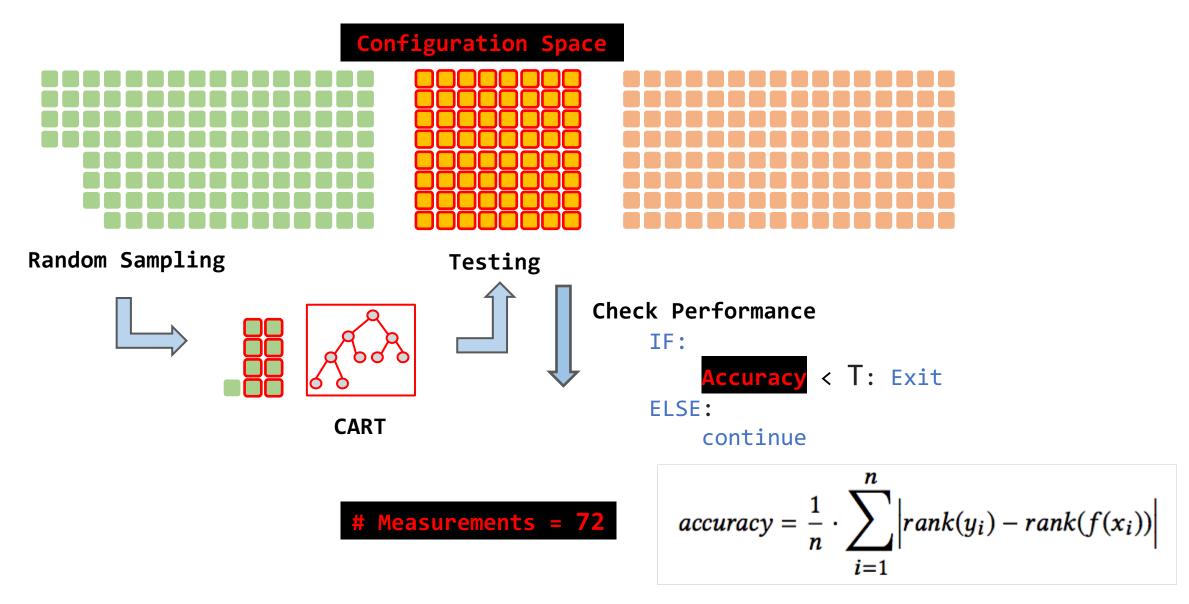


Rank-preserving model rather than highly accurate model



Best Configuration obtained using actual and the predicted values is the same





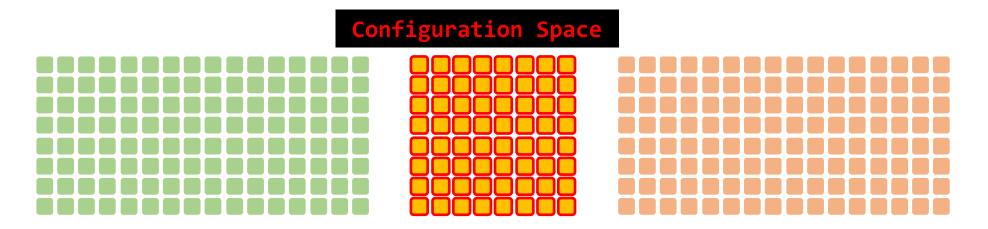
- A rank-based method can be used to find (near) optimal configurations
- A rank-based approach requires fewer measurements

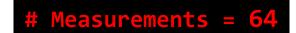
Conclusion

- A rank-based method can be used to find (near) optimal configurations
- A rank-based approach requires fewer measurements

Rank based approaches finds configurations close to the actual optimal

Limitations



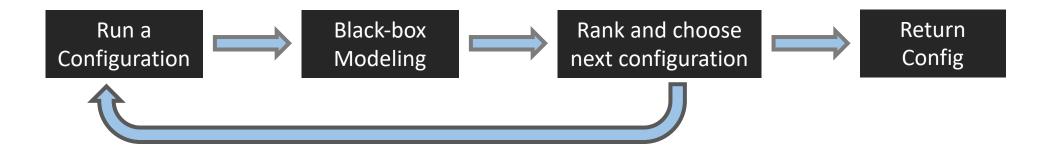


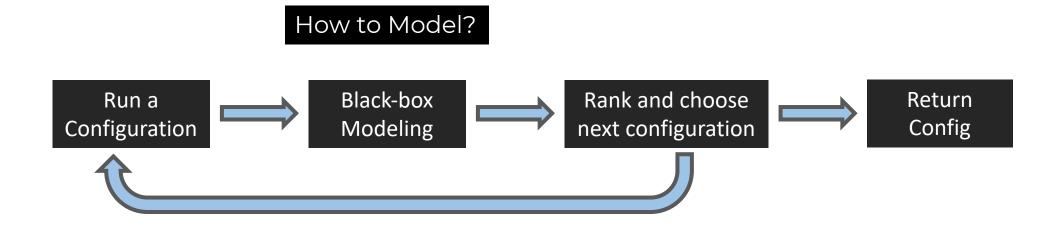
Previously?

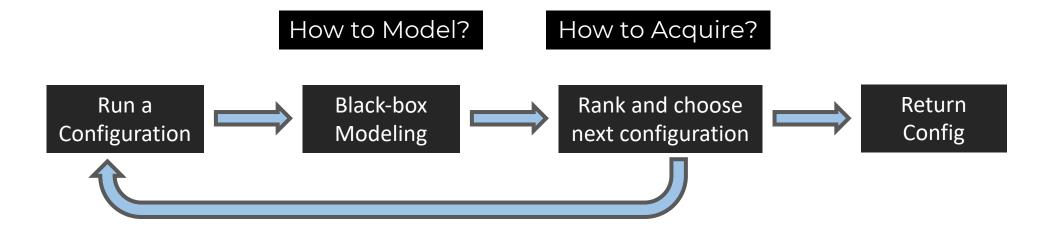
Expensive

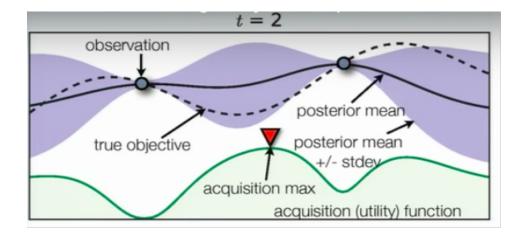
Measurements = 64

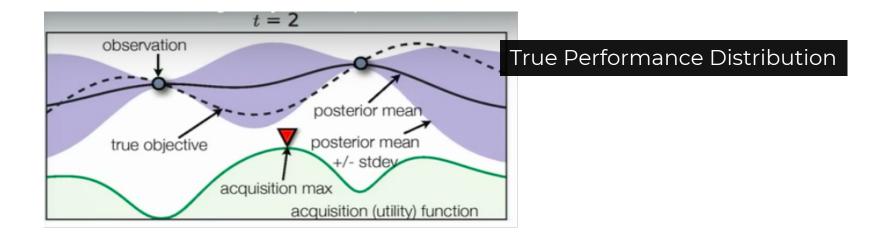
Nair et al.; Finding faster configurations using Flash; TSE (2018)

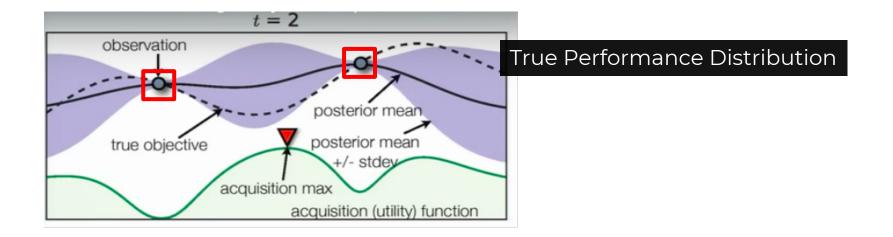


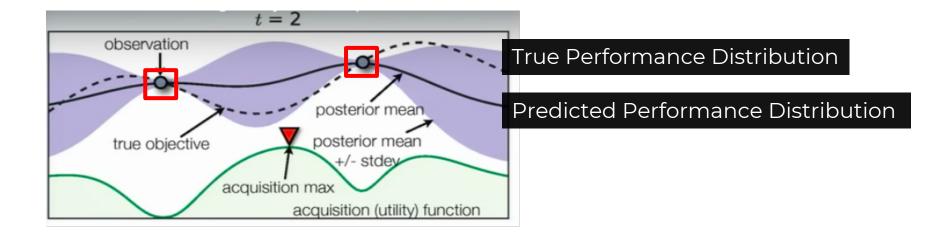


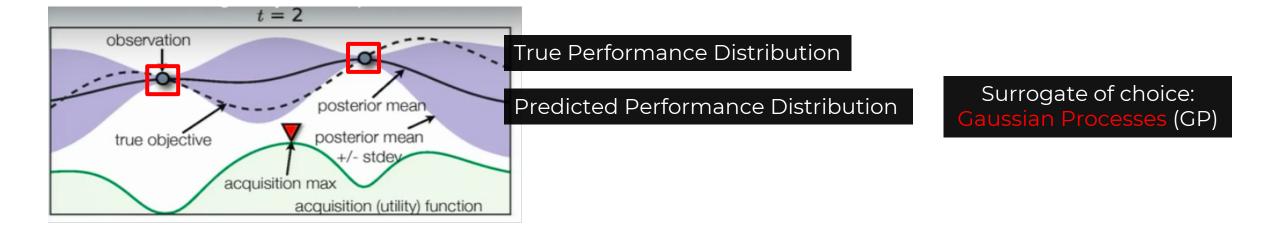


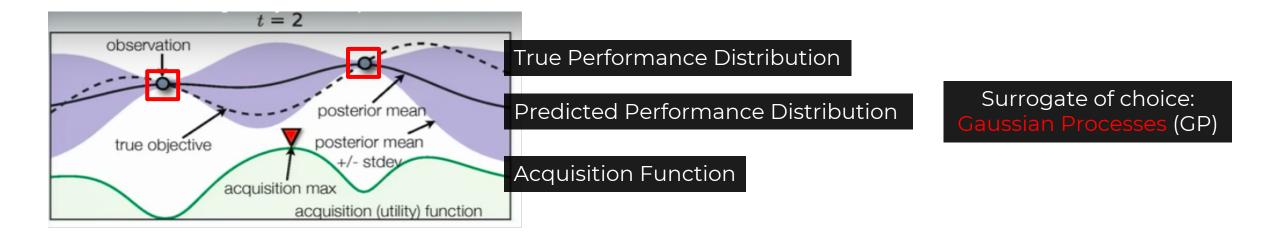


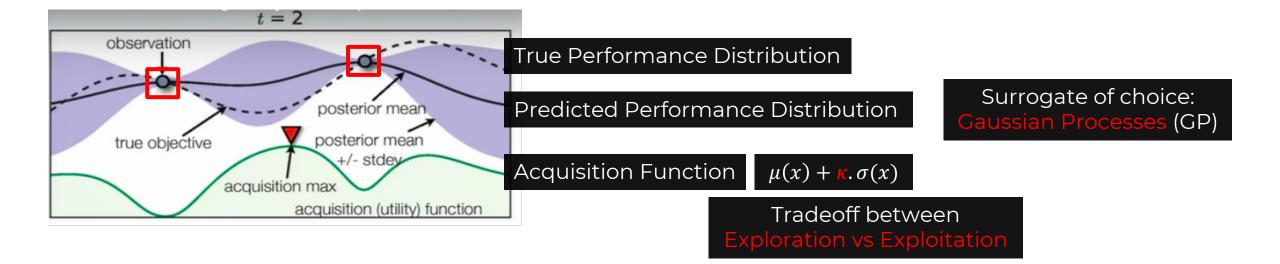


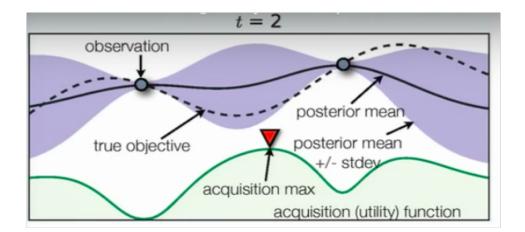


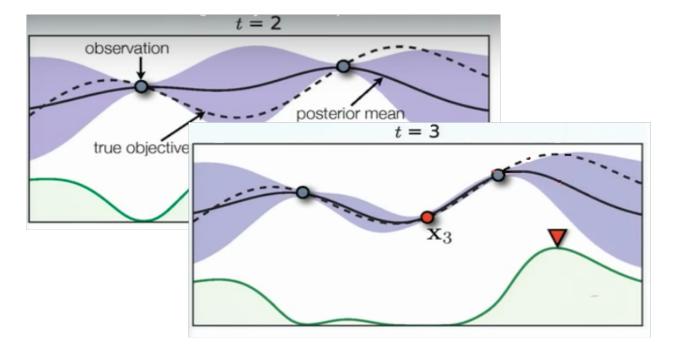


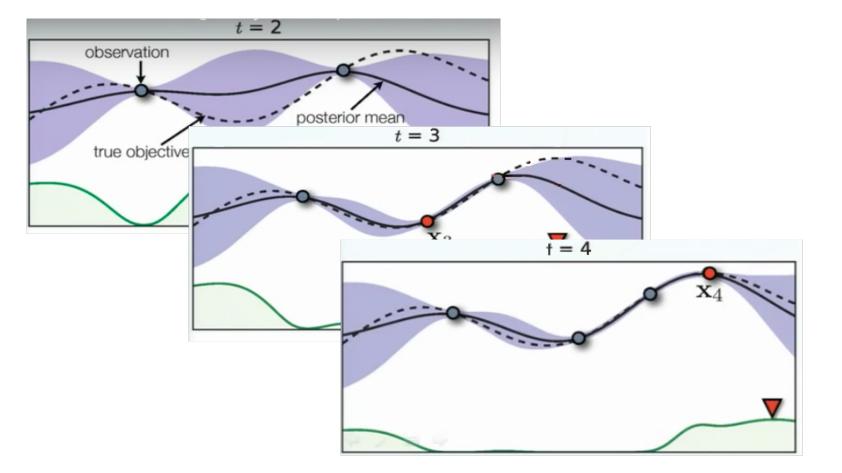


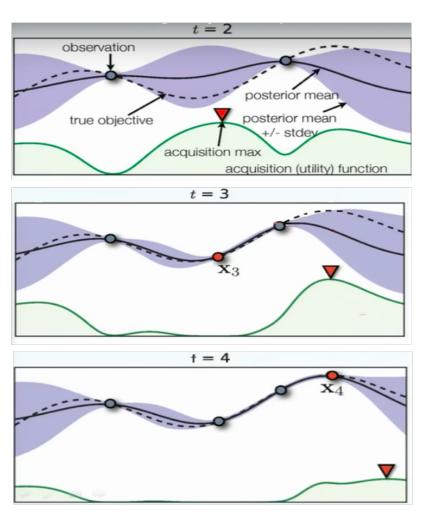






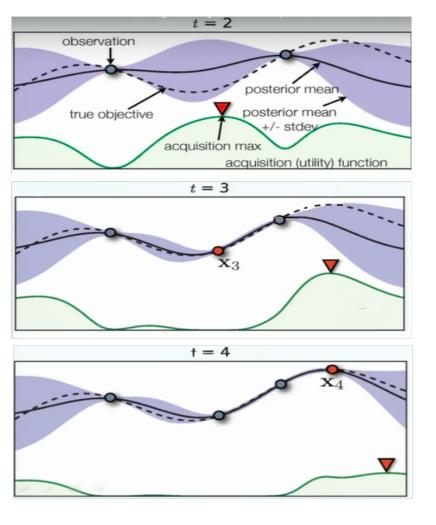






Input:
$$f, \mathcal{X}, S, \mathcal{M}$$

 $\mathcal{D} \leftarrow \text{INITSAMPLES}(f, \mathcal{X})$
for $i \leftarrow |\mathcal{D}|$ to T do
 $p(y \mid \mathbf{x}, \mathcal{D}) \leftarrow \text{FITMODEL}(\mathcal{M}, \mathcal{D})$
 $\mathbf{x}_i \leftarrow \arg \max_{\mathbf{x} \in \mathcal{X}} S(\mathbf{x}, p(y \mid \mathbf{x}, \mathcal{D}))$
 $y_i \leftarrow f(\mathbf{x}_i) \qquad \triangleright \text{ Expensive step}$
 $\mathcal{D} \leftarrow \mathcal{D} \cup (\mathbf{x}_i, y_i)$
end for



Input:
$$f, X, S, M$$
 $\mathcal{D} \leftarrow INITSAMPLES(f, X)$ for $i \leftarrow |\mathcal{D}|$ to T do $p(y | \mathbf{x}, \mathcal{D}) \leftarrow FITMODEL(\mathcal{M}, \mathcal{D})$ $\mathbf{x}_i \leftarrow \arg \max_{\mathbf{x} \in \mathcal{X}} S(\mathbf{x}, p(y | \mathbf{x}, \mathcal{D}))$ $y_i \leftarrow f(\mathbf{x}_i) \rightarrow Expensive step$ $\mathcal{D} \leftarrow \mathcal{D} \cup (\mathbf{x}_i, y_i)$ end forHyperoptMOESMACSpearmint

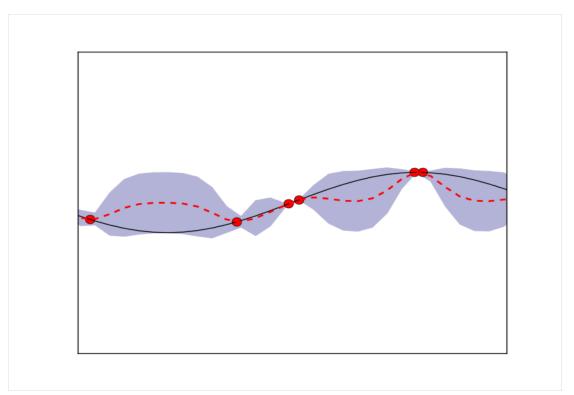
ePAL

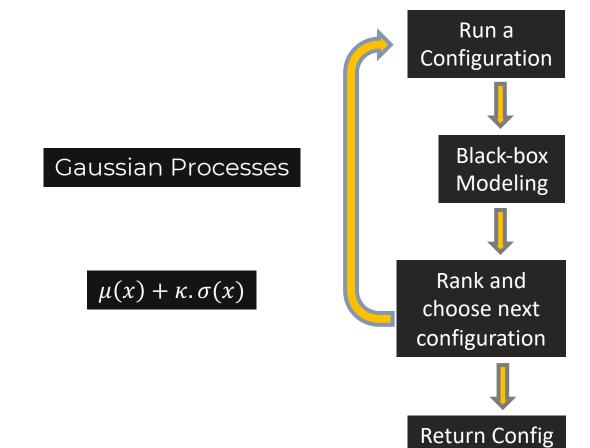
Limitations of SMBO

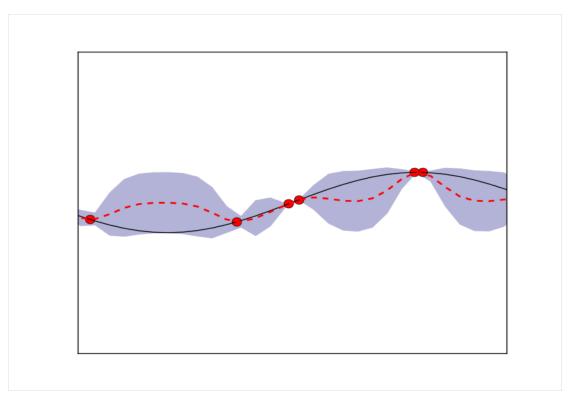
- GPMs can be very fragile, that is, very sensitive to the parameters of GPMs_[1]
- GPMs do not scale to high dimensional data as well as a large dataset_[2]
- GPMs for optimization was limited to models with around ten decisions_[3]

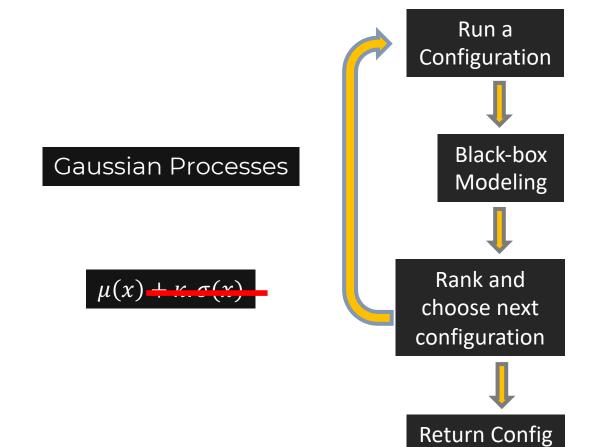
Brochu et al.; "A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning,"; ArXiv, p. 49, 2010.
 Shen et al.; Fast gaussian process regression using kd-trees. In Advances in neural information processing systems; 2006.

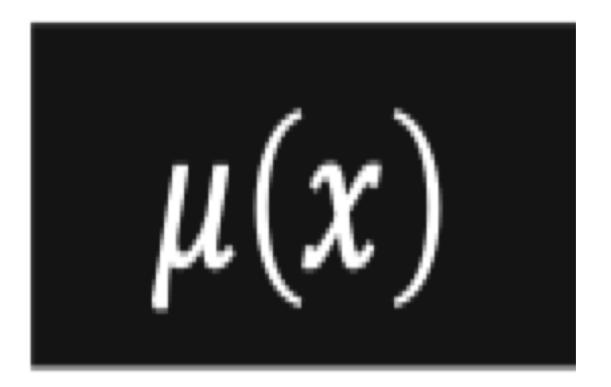
[3] Wang et al.; Bayesian optimization in a billion dimensions via random embeddings; Journal of Artificial Intelligence Research, 2016.

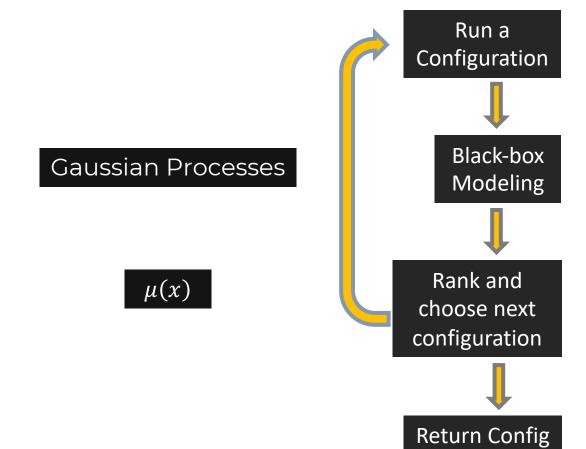


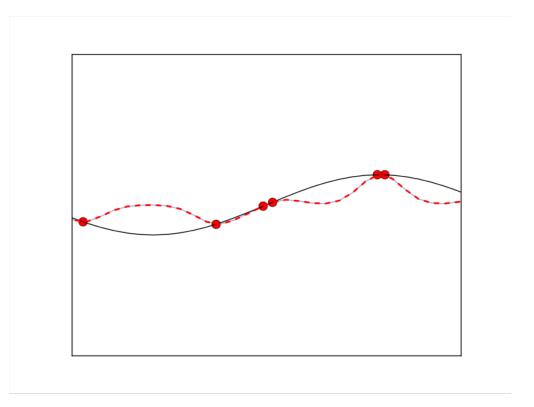


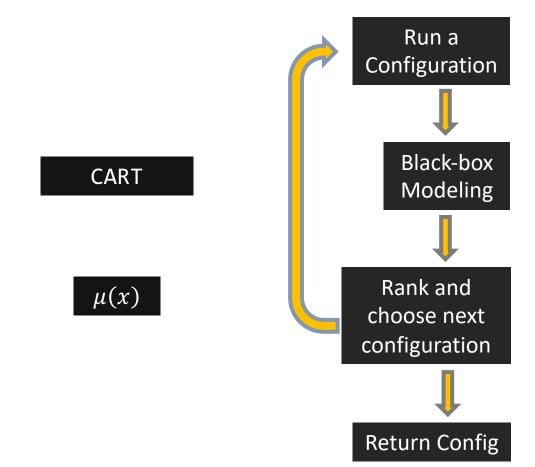




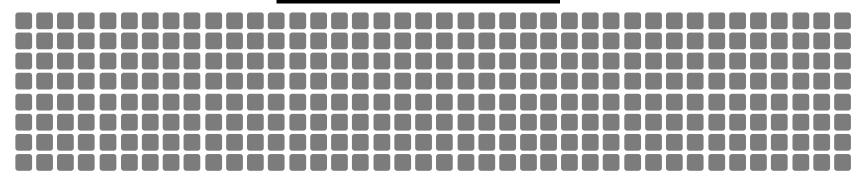


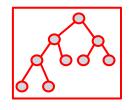






Configuration Space

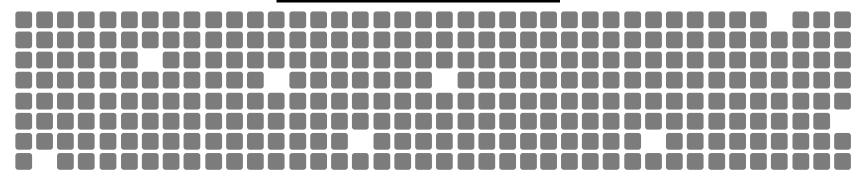


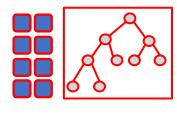


CART

Measurements = 0

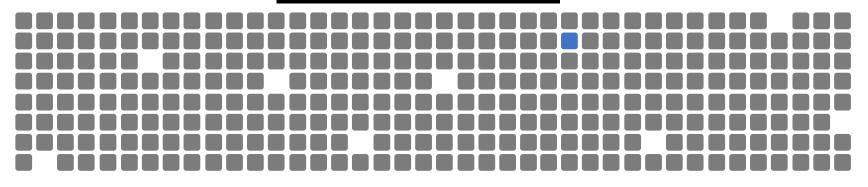
Configuration Space

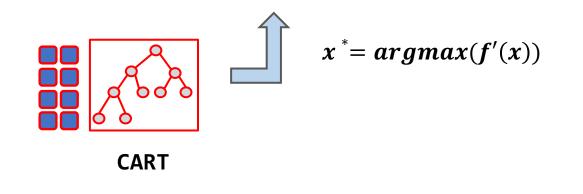


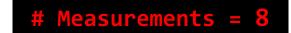


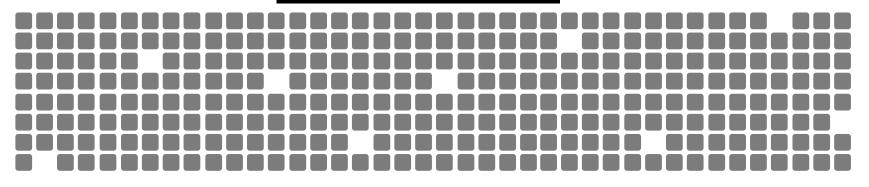
CART

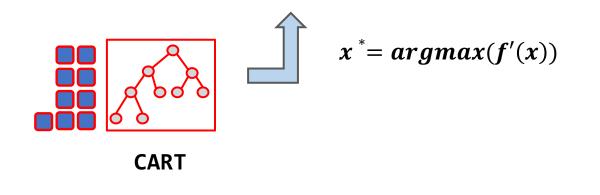
Measurements = 8

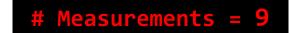


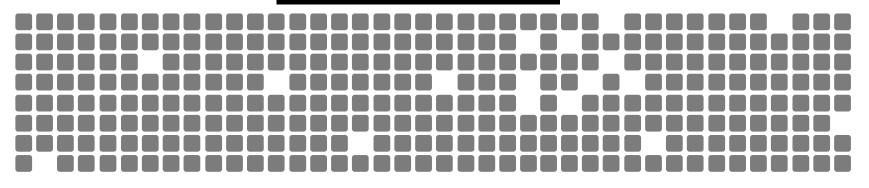


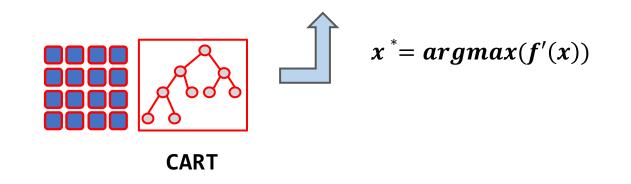


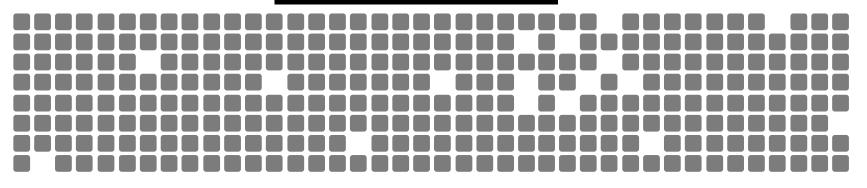


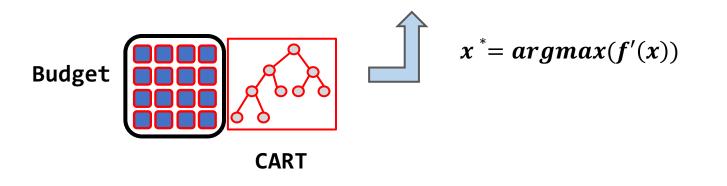












Research Questions

RQ1 Can FLASH find the good configuration?

RQ2 How expensive is FLASH?

Research Questions

Quality RQ1 Can FLASH find the good configuration?

Residual based Method

Sequentially (randomly) sample configuration to build a decision tree till threshold accuracy is reached

Rank based Method Sequentially (randomly) sample configurations to build a decision tree which preserves relative ordering

Guo et al., 2013

Residual based Method

Sequentially (randomly) sample configuration to build a decision tree till threshold accuracy is reached

Nair et al., 2017

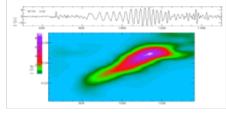
Rank based Method

Sequentially (randomly) sample configurations to build a decision tree which preserves relative ordering

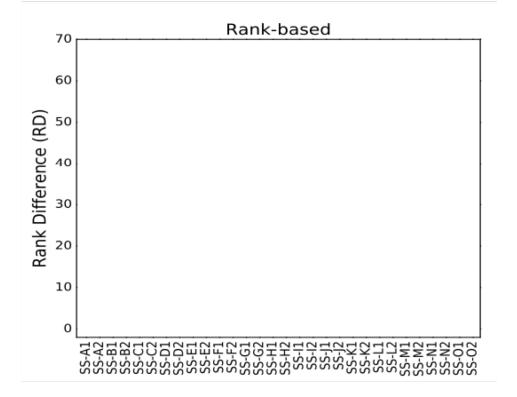
Subject Systems

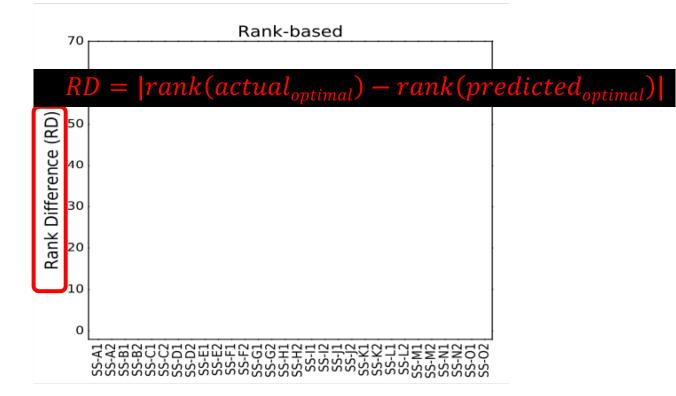
Data Processing

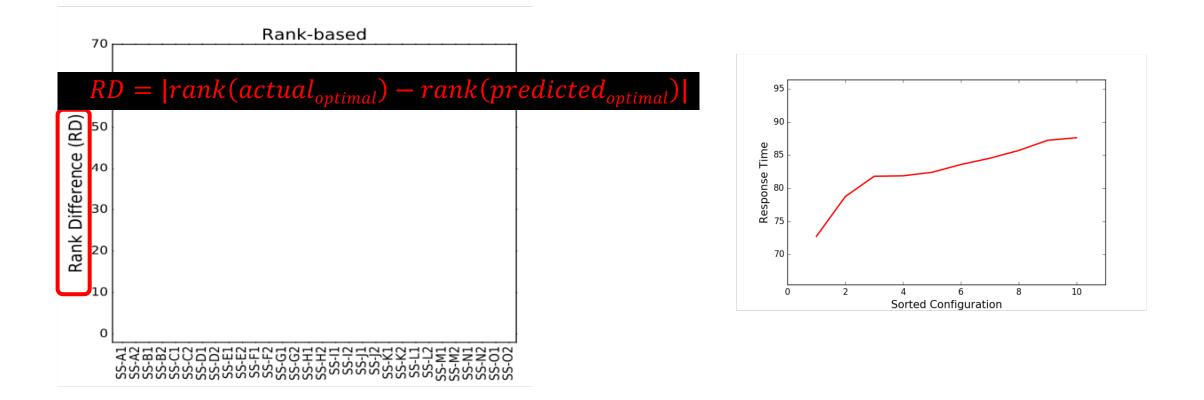
Mesh Solver

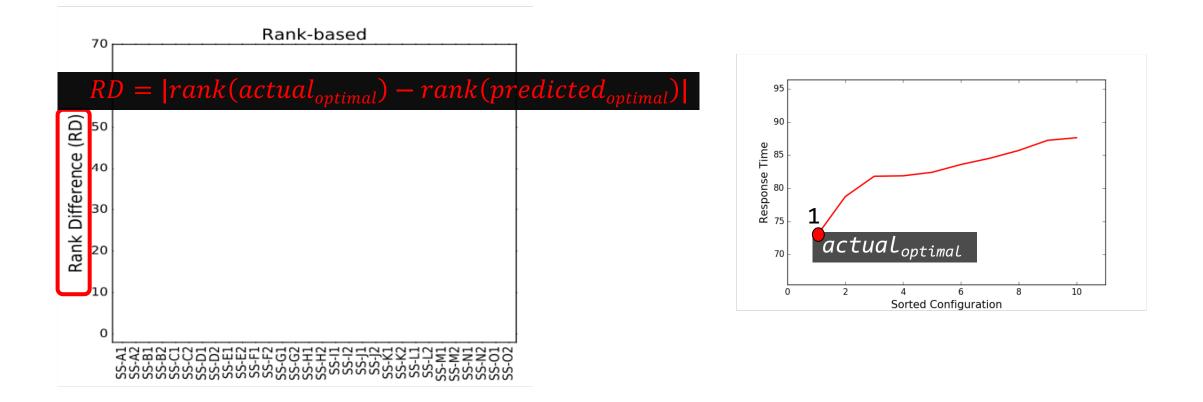


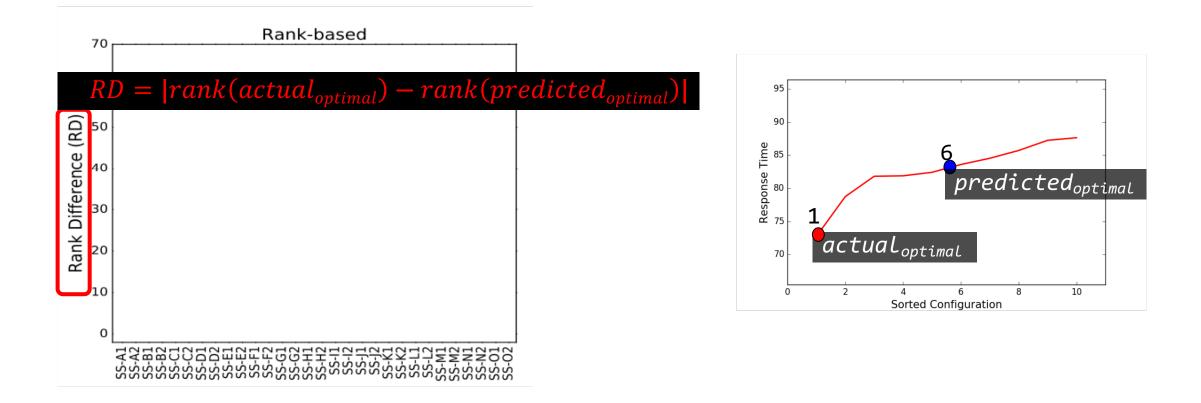
Compiler

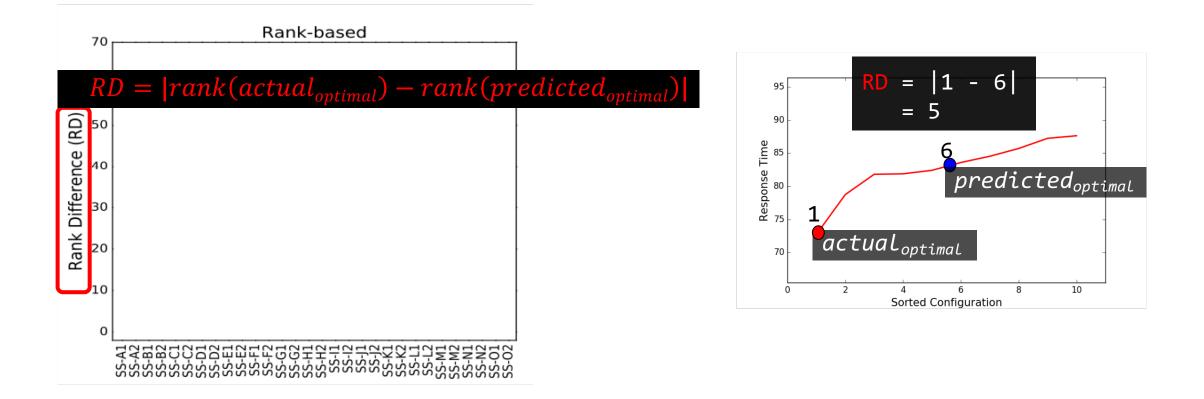


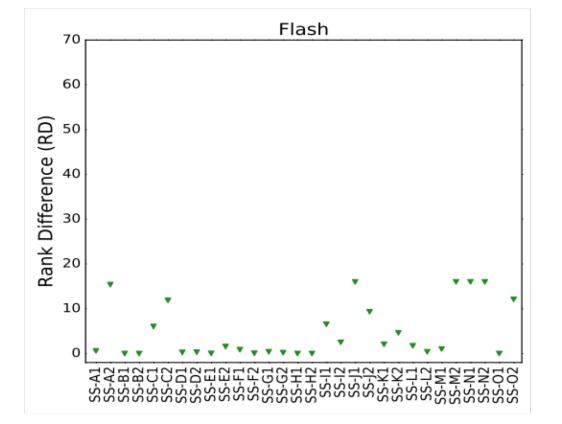


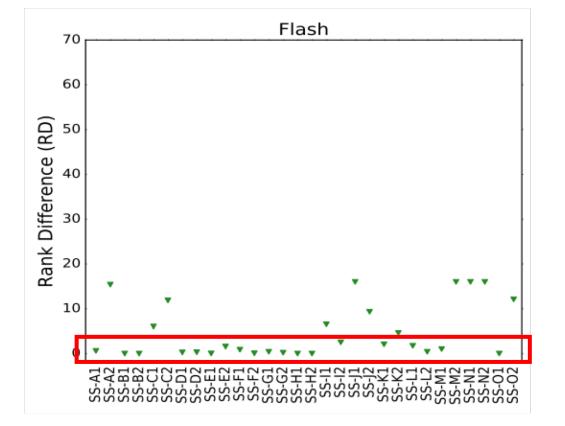


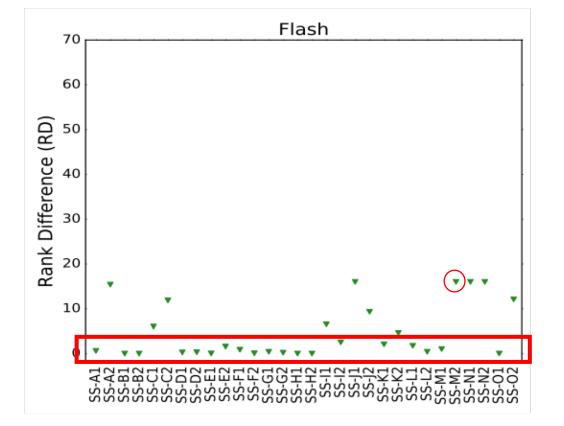


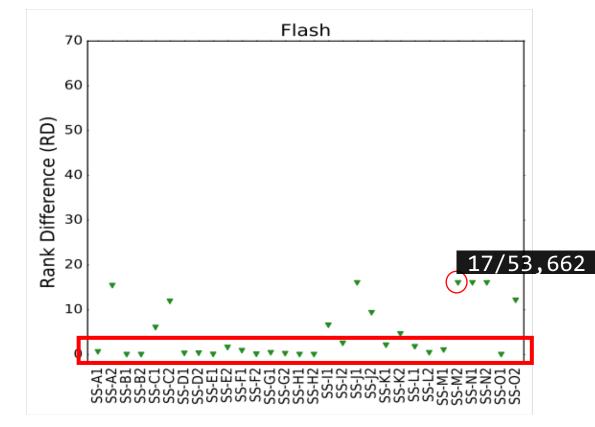


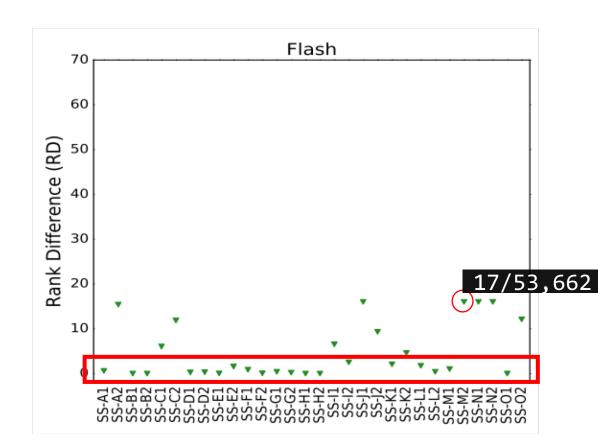


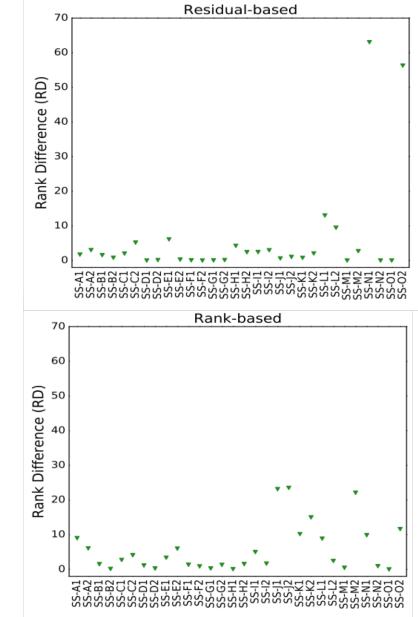


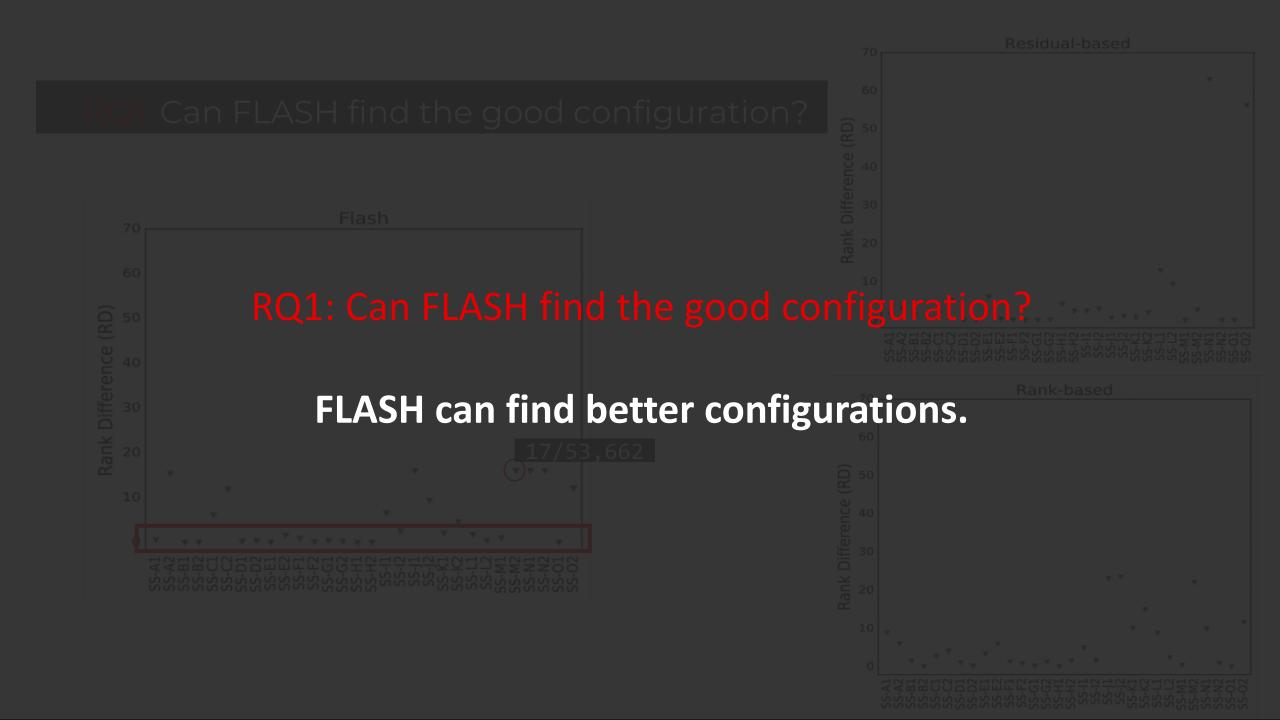


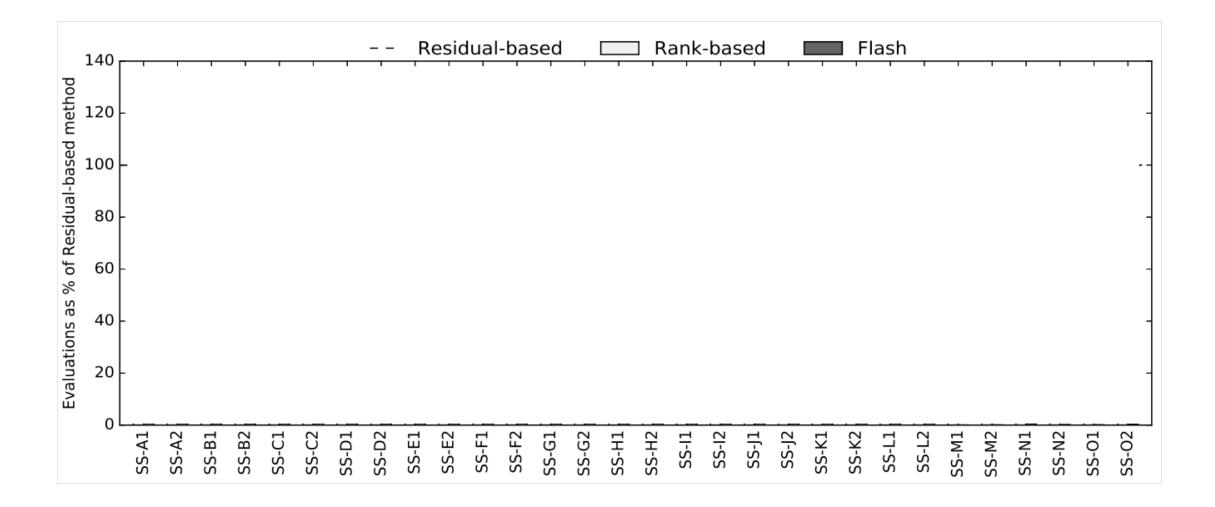


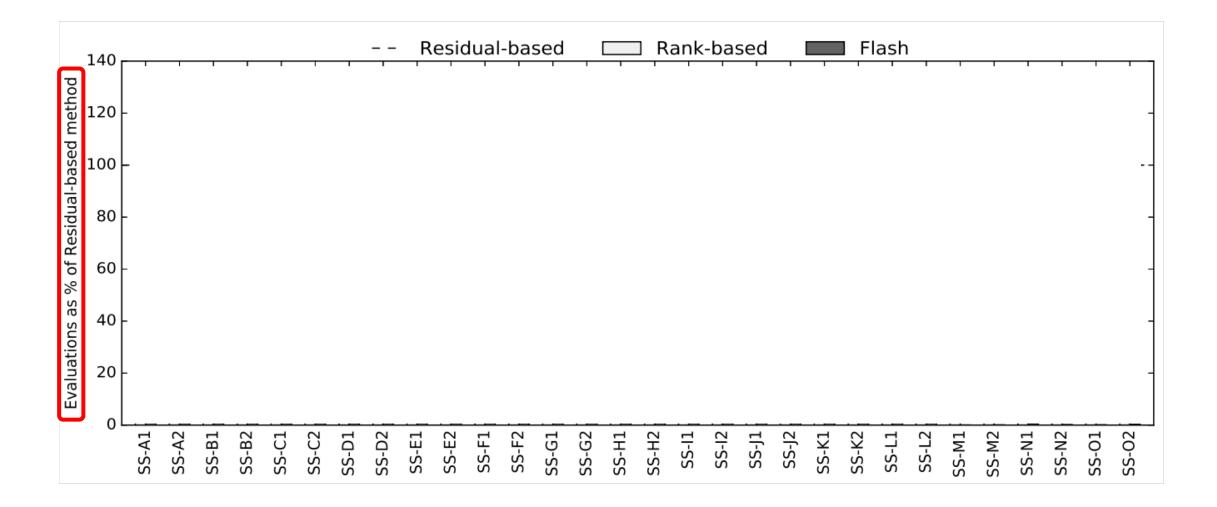




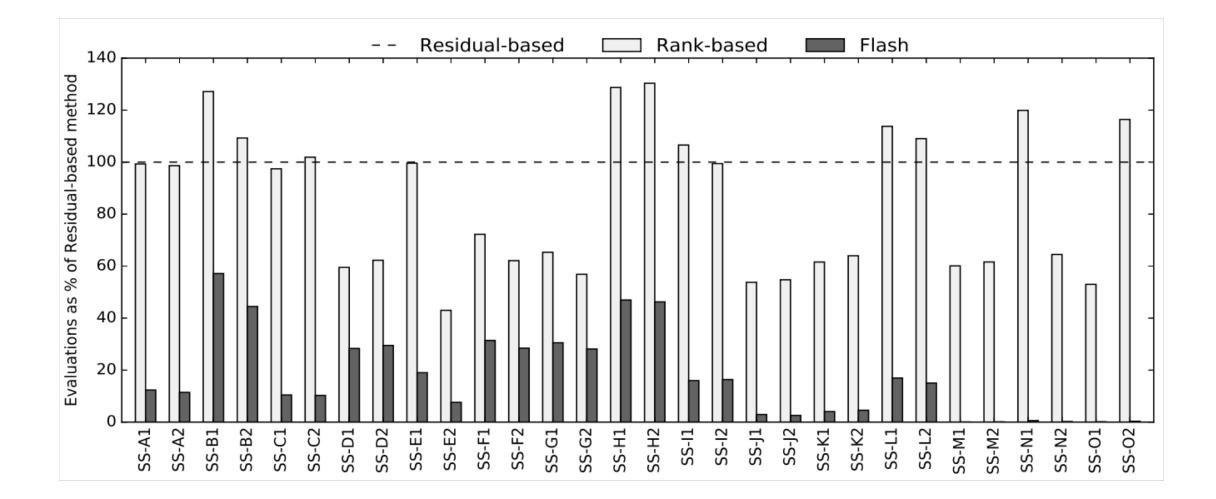


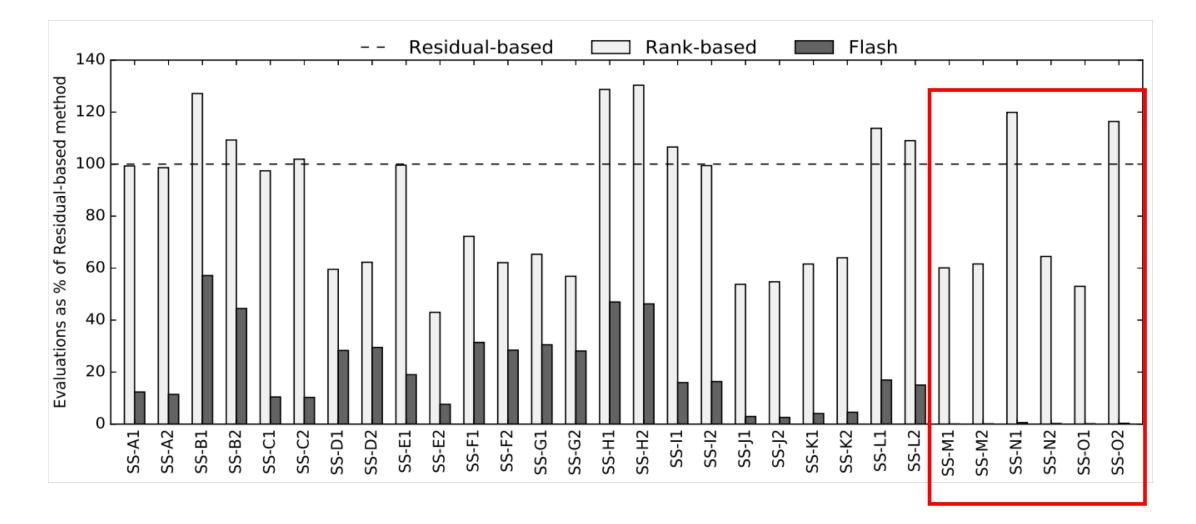


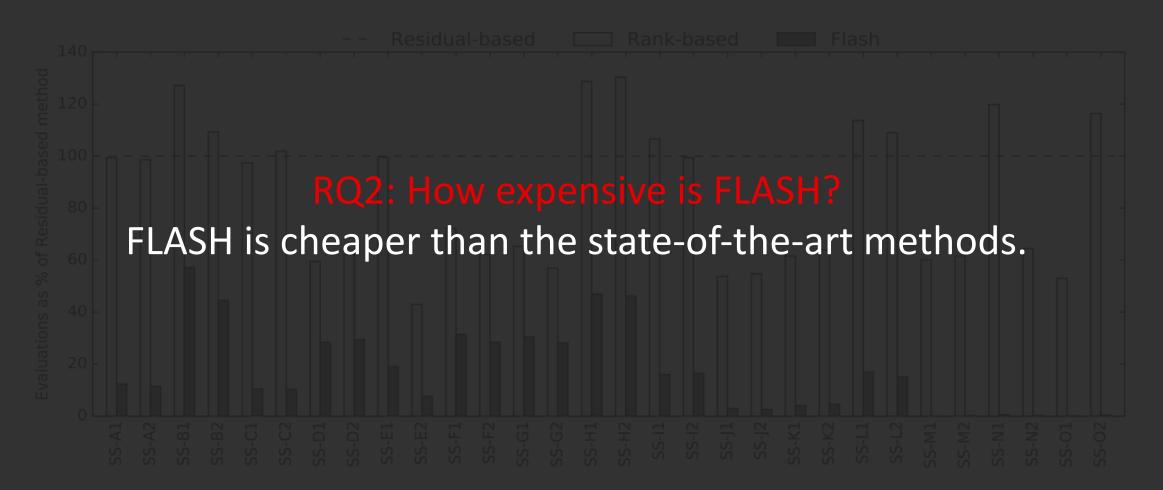




	owe	r i	s t	pet	ter		- 1	- 1		R	esic	lual	-bas	sed	[1] R	ank	-bas	sed	_ [1	I FI	ash	-1	- 1	- 1	-1	-1	-1	
method	120																														-
Evaluations as % of Residual-based method	100	-																													
esidual	80	-																													-
% of Re	60	-																													-
ons as	40	-																													-
ivaluati	20	-																													-
U	0	SS-A1	SS-A2	SS-B1	SS-B2	SS-C1	SS-C2	SS-D1	SS-D2	SS-E1	SS-E2	SS-F1	SS-F2	SS-G1	SS-G2	SS-H1	SS-H2	SS-I1	SS-I2	SS-J1	SS-J2	SS-K1	SS-K2	SS-L1	SS-L2	SS-M1	SS-M2	SS-N1	SS-N2	SS-01	SS-02







Q. Given a software system, which configuration maximizes the throughput (performance measure) for a given benchmark?

Single Objective problem

Given a software system, which configuration maximizes the throughput (performance measure) for a given benchmark?

Single Objective problem

Given a software system, which configuration maximizes the throughput (performance measure) for a given benchmark?

FLASH cannot answer

Q. Given a software system, which configuration maximizes the throughput while minimizing latency for a given benchmark?

Single Objective problem

Given a software system, which configuration maximizes the throughput (performance measure) for a given benchmark?

FLASH cannot answer

Multi-Objective problem

Q. Given a software system, which configuration maximizes the throughput while minimizing latency for a given benchmark?

Single Objective problem

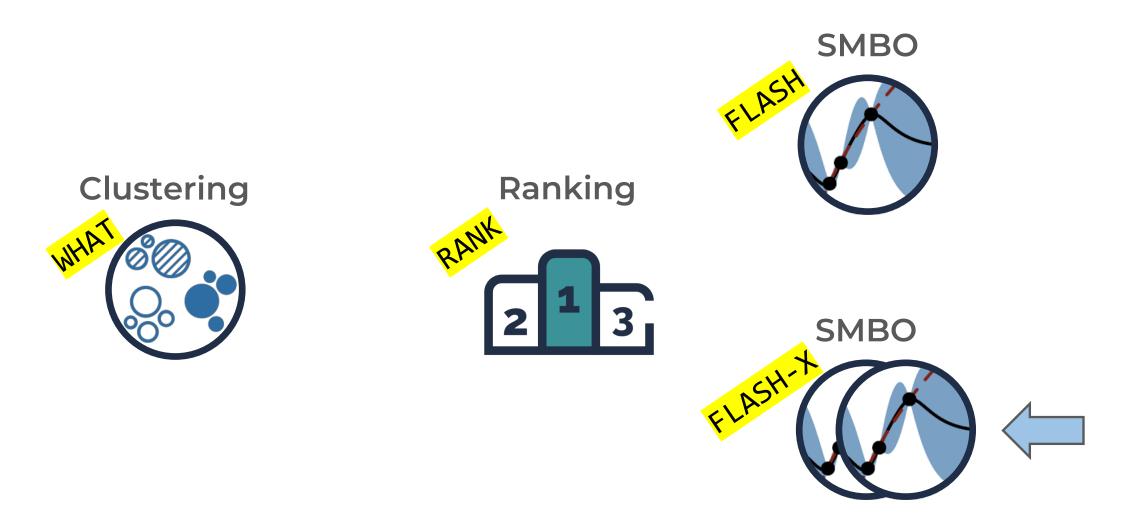
Given a software system, which configuration maximizes the throughput (performance measure) for a given benchmark?

FLASH cannot answer

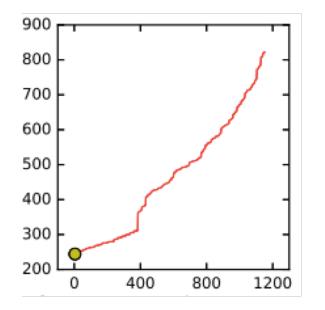
Multi-Objective problem

Q. Given a software system, which configuration maximizes the throughput while minimizing latency for a given benchmark?

How can FLASH be modified to solve multi objective (MO) problems?

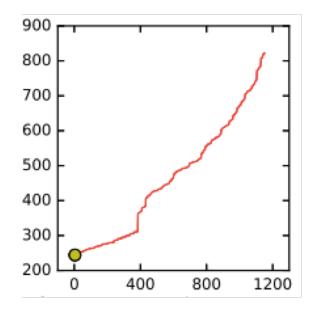


Nair et al.; Finding faster configurations using Flash; TSE (2018)



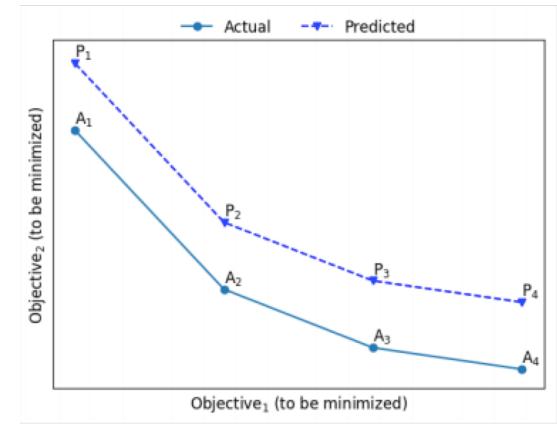
Single Objective Problems

Single 'best' solution



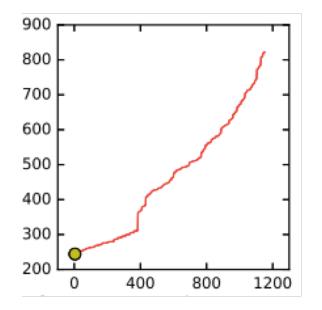
Single Objective Problems

Single 'best' solution



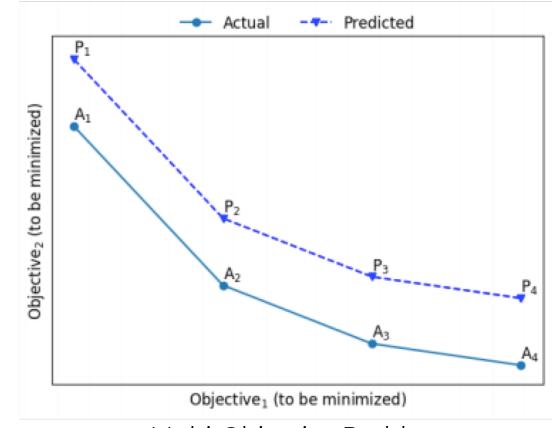
Multi-Objective Problems

- No single 'best' solution
- Number of 'best' solutions



Single Objective Problems

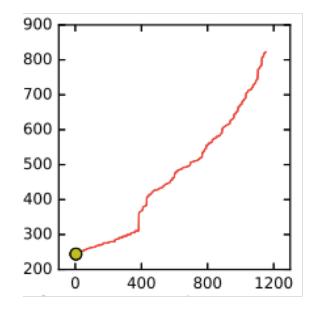
Single 'best' solution



Multi-Objective Problems

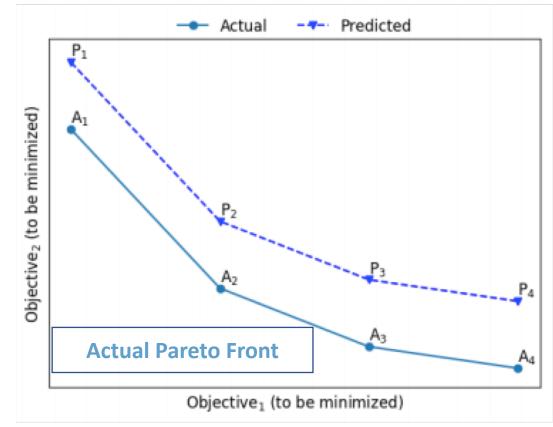
- No single 'best' solution
- Number of 'best' solutions

Pareto Front



Single Objective Problems

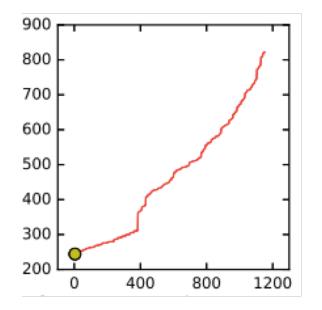
Single 'best' solution



Multi-Objective Problems

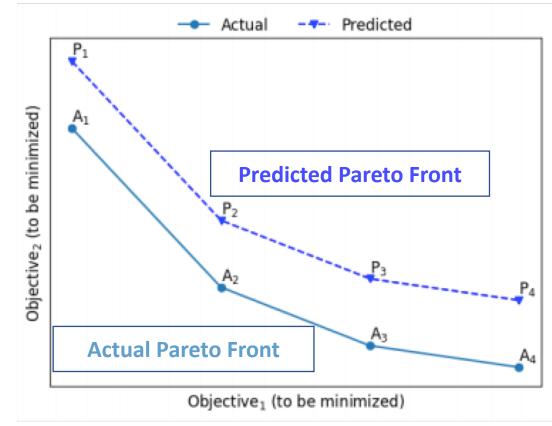
- No single 'best' solution
- Number of 'best' solutions

Pareto Front



Single Objective Problems

Single 'best' solution

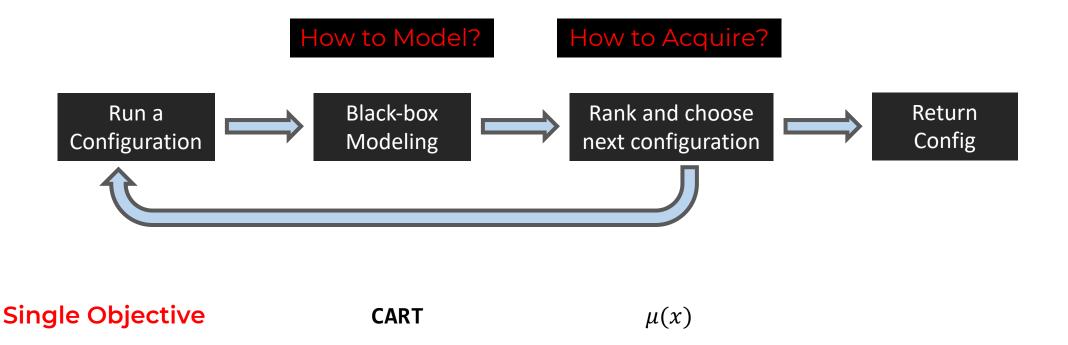


Multi-Objective Problems

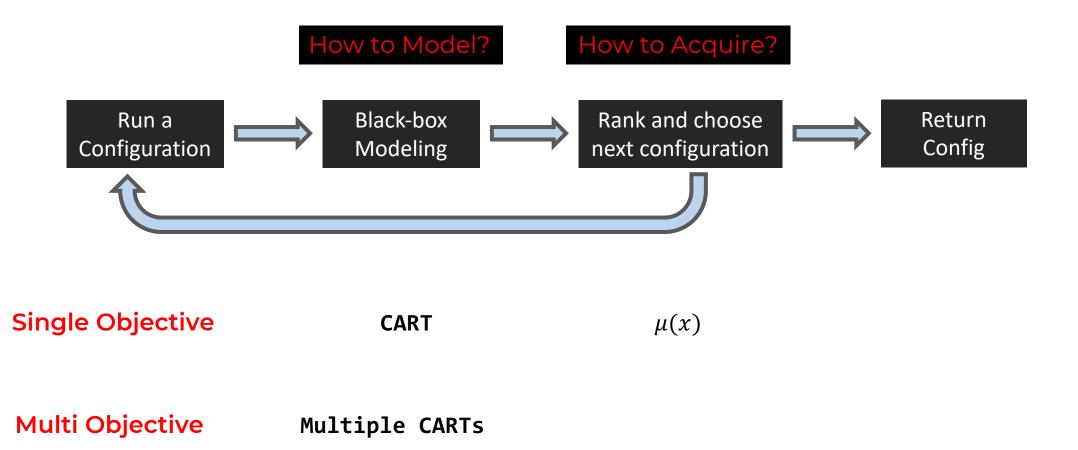
- No single 'best' solution
- Number of 'best' solutions

Pareto Front

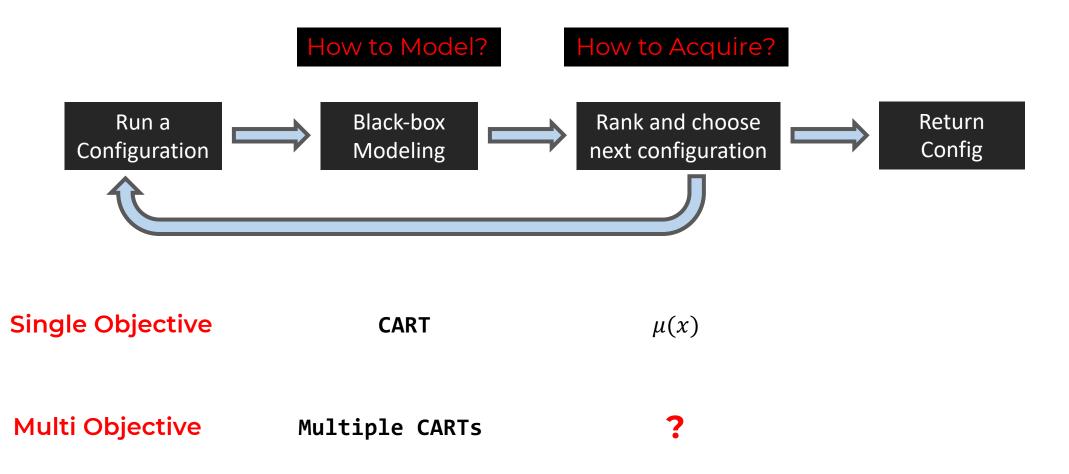
Workflow of Flash



Workflow of Flash



Workflow of Flash



• Need for a fitness assignment scheme to quantify relative fitness value.

- Need for a fitness assignment scheme to quantify relative fitness value. ٠
- Decomposition based scheme: Divide a problem into sub-problems.^[1] •

[1] Zhang, Qingfu, and Hui Li. "MOEA/D: A multiobjective evolutionary algorithm based on decomposition." IEEE Transactions on evolutionary computation 11.6 (2007): 712-731.

- Need for a fitness assignment scheme to quantify relative fitness value.
- Decomposition based scheme: Divide a problem into sub-problems.^[1]

Weight Vector
$$\lambda = (\lambda_1, \dots, \lambda_m)^T$$

 $\lambda_i \ge 0 \text{ for all } i = 1, \dots, m$
 $\sum_{i=1}^m \lambda_i = 1$

^[1] Zhang, Qingfu, and Hui Li. "MOEA/D: A multiobjective evolutionary algorithm based on decomposition." IEEE Transactions on evolutionary computation 11.6 (2007): 712-731.

- Need for a fitness assignment scheme to quantify relative fitness value. ٠
- Decomposition based scheme: Divide a problem into sub-problems.^[1] •

Weight Vector
$$\lambda = (\lambda_1, \dots, \lambda_m)^T$$

 $\lambda_i \ge 0 \text{ for all } i = 1, \dots, m$
 $\sum_{i=1}^m \lambda_i = 1$

maximize
$$g^{ws}(x|\boldsymbol{\lambda}) = \sum_{i=1}^{m} \lambda_i f_i(x)$$

^[1] Zhang, Qingfu, and Hui Li. "MOEA/D: A multiobjective evolutionary algorithm based on decomposition." IEEE Transactions on evolutionary computation 11.6 (2007): 712-731.

- Need for a fitness assignment scheme to quantify relative fitness value. ٠
- Decomposition based scheme: Divide a problem into sub-problems.^[1] •

Weight Vector
$$\lambda = (\lambda_1, \dots, \lambda_m)^T$$

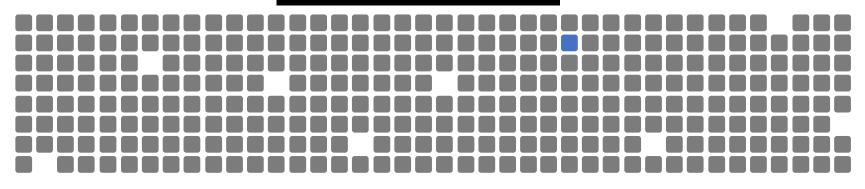
 $\lambda_i \ge 0 \text{ for all } i = 1, \dots, m$
 $\sum_{i=1}^m \lambda_i = 1$

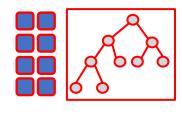
maximize
$$g^{ws}(x|\boldsymbol{\lambda}) = \sum_{i=1}^{m} \lambda_i f_i(x)$$

N weight vectors can be used to find multiple pareto optimal solutions. ٠

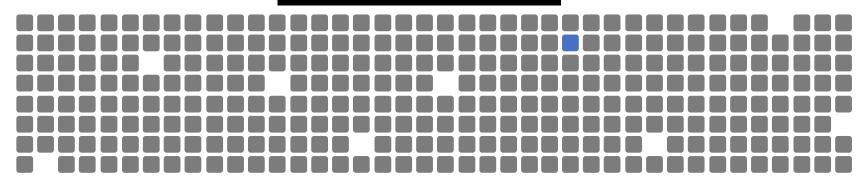
[1] Zhang, Qingfu, and Hui Li. "MOEA/D: A multiobjective evolutionary algorithm based on decomposition." IEEE Transactions on evolutionary computation 11.6 (2007): 712-731.

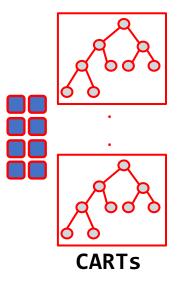
Weight Weight
$$\lambda = (\lambda_1, \dots, \lambda_n)$$
Bazza $\lambda_i \ge 0$ for all $i = 1, \dots, m$ maximize $g^{ws}(x|\lambda) = \sum_{i=1}^m \lambda_i f_i(x)$ $\sum_{i=1}^m \lambda_i = 1$

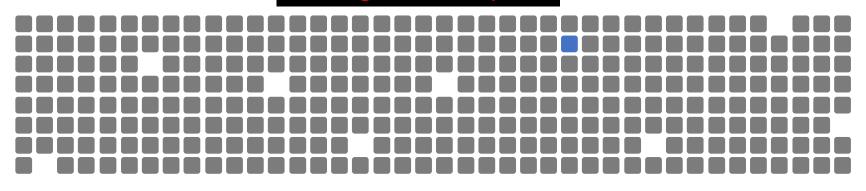


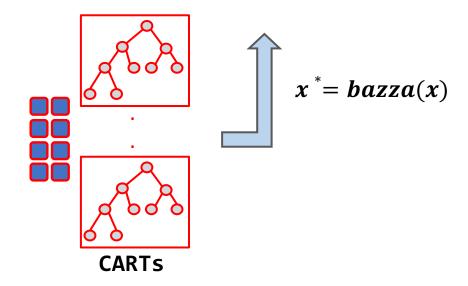


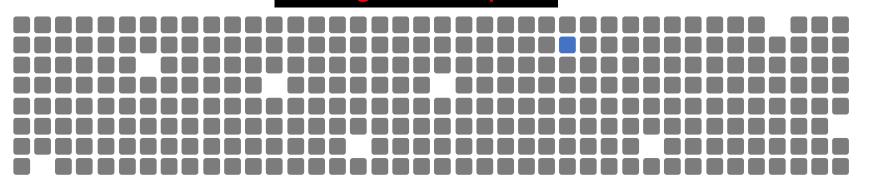
CARTS

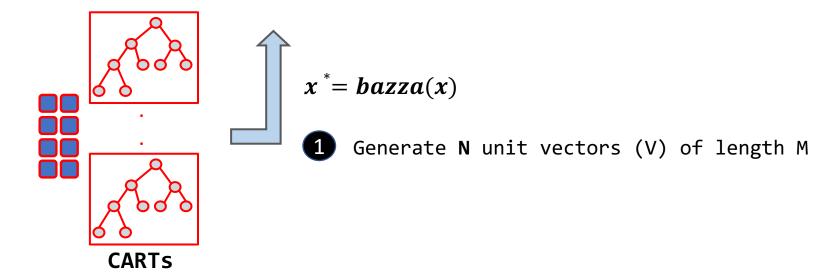


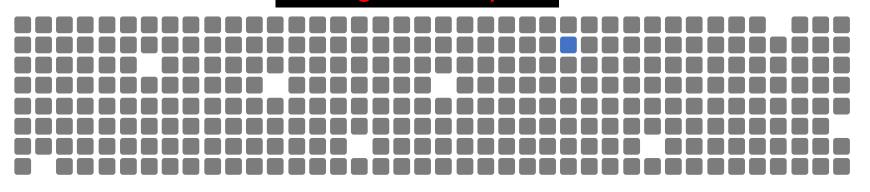


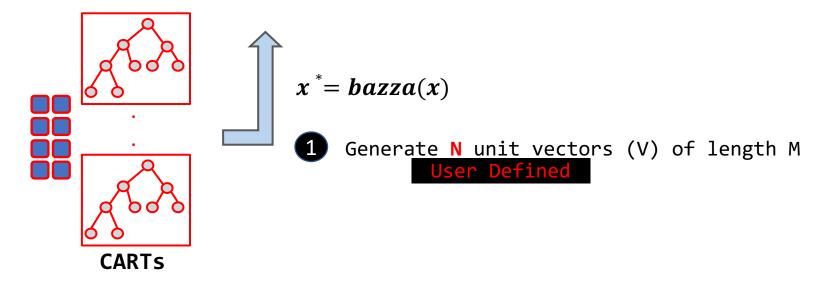


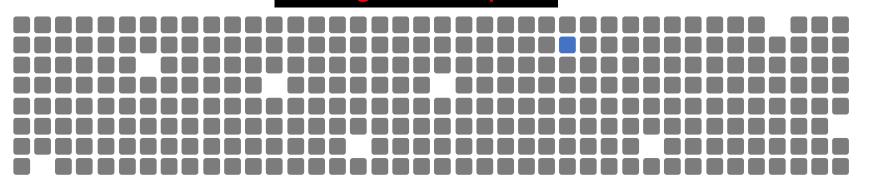


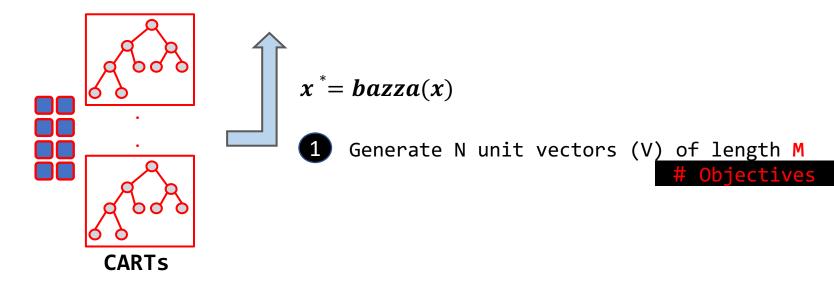


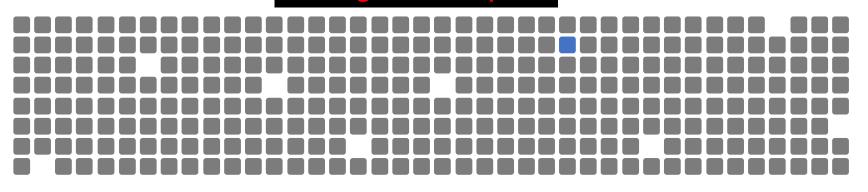


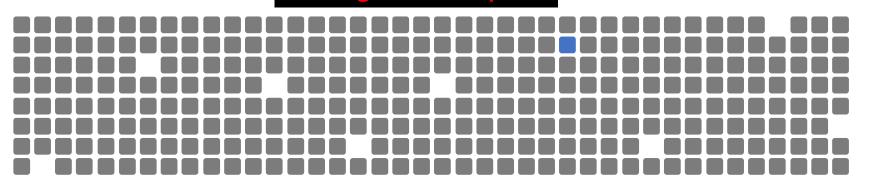


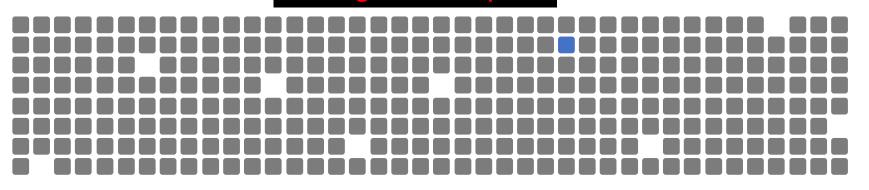






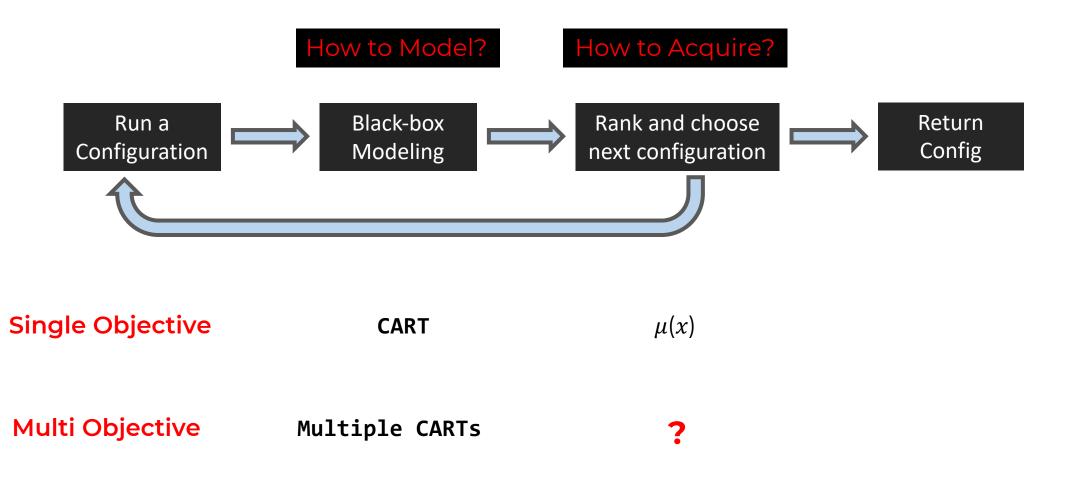




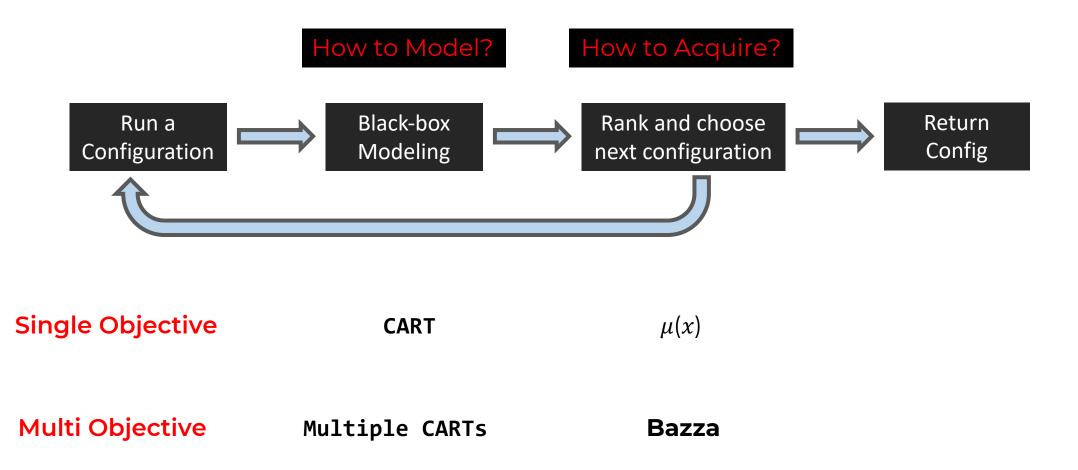


 $x^* = bazza(x)$ 1 Generate N unit vectors (V) of length M
2 Compute bazza for all configurations $bazza_i = \frac{1}{N} \sum_{n}^{N} \sum_{j}^{m} (V_{n,j} \cdot f_j(x_i))$ 3 Return argmax(bazza_i)

Workflow of Flash



Workflow of Flash



Reflects on the evaluated configurations to decide the next best configuration to measure using Maximum Variance (predictive uncertainty) as an acquisition function.

[1] Zuluaga et al.; "ε-pal: an active learning approach to the multi-objective optimization problem."; The Journal of Machine Learning Research 17.1 (2016)

Reflects on the evaluated configurations to decide the next best configuration to measure using Maximum Variance (predictive uncertainty) as an acquisition function.

We use two versions of ePAL:

- ePAL with \in = 0.01 (ePAL_0.01)
- ePAL with ϵ = 0.3 (ePAL_0.3)

[1] Zuluaga et al.; "ε-pal: an active learning approach to the multi-objective optimization problem."; The Journal of Machine Learning Research 17.1 (2016)

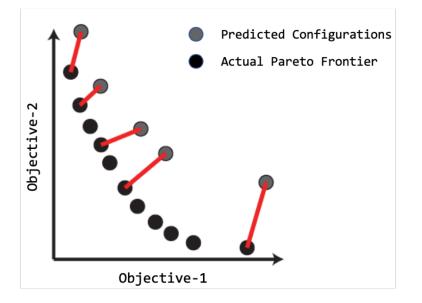
Evaluation Metrics

Evaluation Metrics

Generational Distance (GD)

Measures the closeness of the

solutions from by the optimizers to the Pareto frontier that is, the actual set of non-dominated solutions.

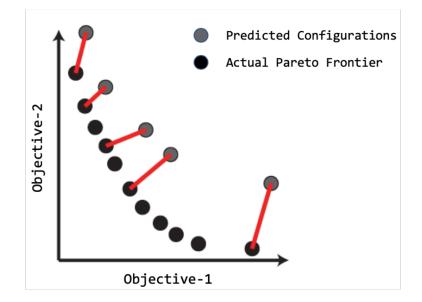


Evaluation Metrics

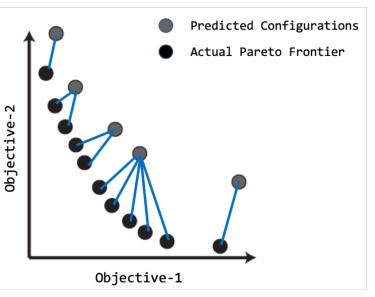
Generational Distance (GD)

Measures the closeness of the

solutions from by the optimizers to the Pareto frontier that is, the actual set of non-dominated solutions.



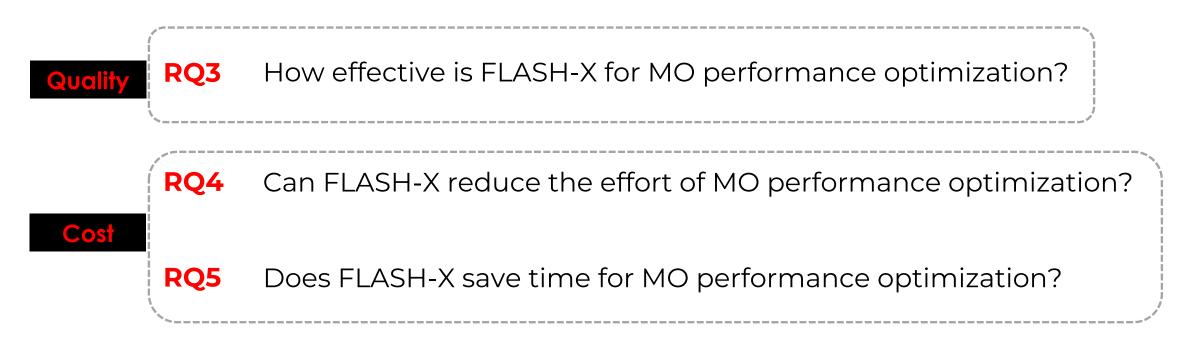
Inverted Generational Distance (IGD) Mean distance from points on the true Pareto-optimal solutions to its nearest point in solutions returned by the optimizer.



RQ3 How effective is FLASH-X for MO performance optimization?

RQ4 Can FLASH-X reduce the effort of MO performance optimization?

RQ5 Does FLASH-X save time for MO performance optimization?



Software		GD		IGD				
	epal_0.01	epal_0.3	Flash-X	epal_0.01	epal_0.3	Flash-X		
SS-A	0.002	0.002	0	0.002	0.002	0		
SS-B	0	0	0.005	0	0.003	0.001		
SS-C	0.001	0.001	0.003	0.004	0.004	0		
SS-D	0	0.004	0.014	0.002	0.007	0.009		
SS-E	0.001	0.001	0.012	0.004	0.008	0.002		
SS-F	0	0.016	0.008	0	0.006	0.016		
SS-G	0	0	0.023	0.003	0.006	0.004		
SS-H	0	0	0	0	0	0		
SS-I	0.008	0.018	0	0.008	0.018	0		
SS-J	0	0	0.002	0.002	0.002	0		
SS-K	0.001	0.001	0.003	0.001	0.002	0.001		
SS-L	0.01	0.028	0.006	0.007	0.008	0.009		
SS-M	х	х	0	Х	х	0		
SS-N	Х	х	0.065	Х	Х	0.015		
SS-O	Х	Х	3.01E-07	Х	Х	3.20E-06		
Win (%)	73	67	93	67	33	67		

Software		GD		IGD			
	epal_0.01	epal_0.3	Flash-X	epal_0.01	epal_0.3	Flash->	
SS-A	0.002	0.002	0	0.002	0.002	0	
SS-B	0	0	0.005	0	0.003	0.001	
SS-C	0.001	0.001	0.003	0.004	0.004	0	
SS-D	0	0.004	0.014	0.002	0.007	0.009	
SS-E	0.001	0.001	0.012	0.004	0.008	0.002	
SS-F	0	0.016	0.008	0	0.006	0.016	
SS-G	0	0	0.023	0.003	0.006	0.004	
SS-H	0	0	0	0	0	0	
SS-I	0.008	0.018	0	0.008	0.018	0	
SS-J	0	0	0.002	0.002	0.002	0	
SS-K	0.001	0.001	0.003	0.001	0.002	0.001	
SS-L	0.01	0.028	0.006	0.007	0.008	0.009	
SS-M	х	х	0	х	х	0	
SS-N	Х	Х	0.065	Х	Х	0.015	
SS-O	Х	Х	3.01E-07	Х	Х	3.20E-06	
Win (%)	73	67	93	67	33	67	

RQ3: How effective is FLASH for MO performance optimization?

		epal_0.01	epal_0.3		epal_0.01	epal_0.3		
	v effec	ctive is	FLAS	H-Xofc	or MO	perfo	rman	ce optimization?
								•
					0.004			
	SS-G	0		0.023	0.003		0.004	
FLASH-X is ve	erv ette	ective	for M	O per	forma	nce co	onfigu	ration optimization.
	SS-I			0			- O	
	SS-J							
					0.001			
	SS-L							

RQ4: Can FLASH-X reduce the effort of MO performance optimization?

RQ4: Can FLASH-X reduce the effort of MO performance optimization?

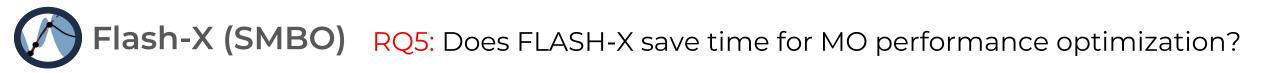
Software	Evals							
	epal_0.01	epal_0.3	Flash-y					
SS-A	109.5	73.5	50					
SS-B	84.5	20	50					
SS-C	247	101	50					
SS-D	119.5	67	50					
SS-E	208	54.5	50					
SS-F	138	71	50					
SS-G	131	69	50					
SS-H	52	28	50					
SS-I	48	30	50					
SS-J	186	30	50					
SS-K	209	140	50					
SS-L	68.5	35	50					
SS-M	Х	Х	50					
SS-N	Х	Х	50					
SS-O	Х	Х	50					
Win (%)	0	33	80					

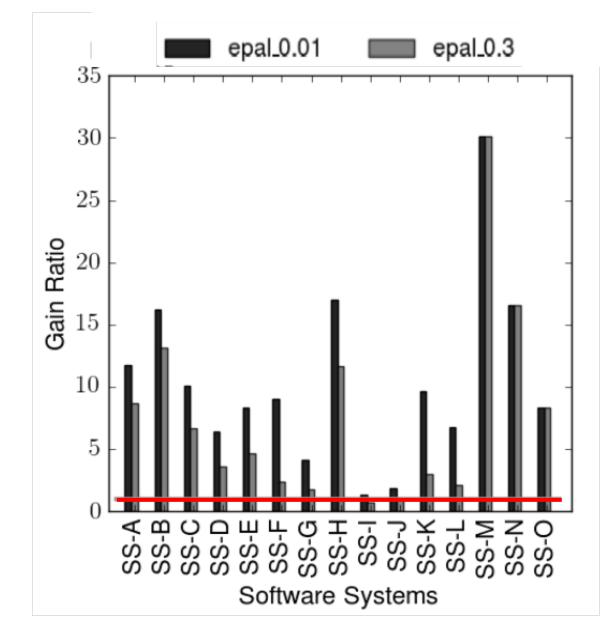
RQ4: Can FLASH-X reduce the effort of MO performance optimization?

Software	Evals						
	epal_0.01	epal_0.3	Flash-y				
SS-A	109.5	73.5	50				
SS-B	84.5	20	50				
SS-C	247	101	50				
SS-D	119.5	67	50				
SS-E	208	54.5	50				
SS-F	138	71	50				
SS-G	131	69	50				
SS-H	52	28	50				
SS-I	48	30	50				
SS-J	186	30	50				
SS-K	209	140	50				
SS-L	68.5	35	50				
SS-M	x	х	50				
SS-N	Х	Х	50				
SS-O	Х	Х	50				
Win (%)	0	33	80				

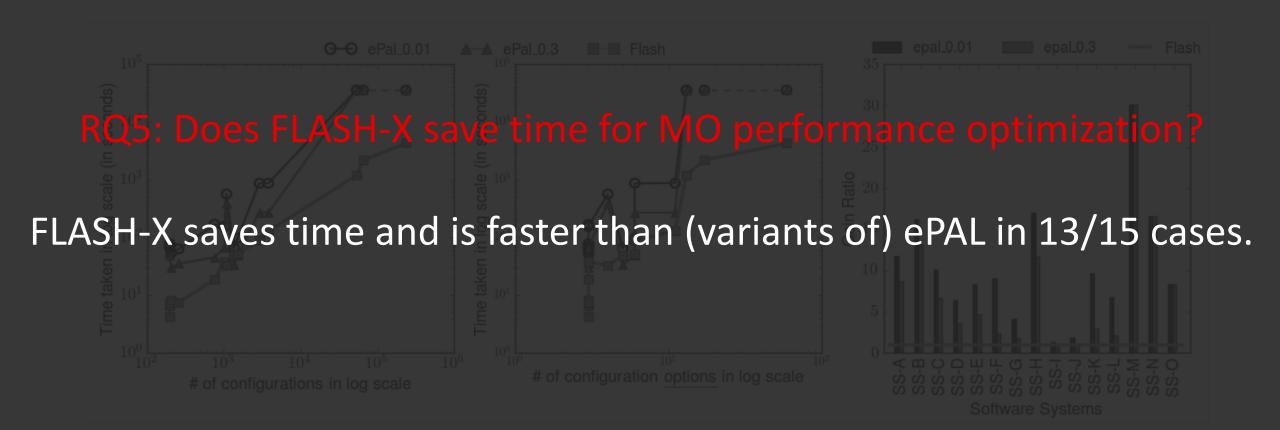
RQ4: Can FLASH reduce the effort of MO performance optimization?

	Software	Evals			
		epal_0.01	epal_0.3	FLASH	
	SS-A		73.5		
	uce the	e effor	t of M	O pe	
	SS-D	119.5	67		
	SS-E	208	54.5		
	SS-F	138	71		
FLASH-X rec	quires f	ewer r	measu	ireme	ents than ePAL.
	SS-I				
	SS-J	186			
	SS-K	209	140		
	SS-L		35		
	SS-M	X	Х		
	SS-N	Х	Х		
	SS-O	Х	Х		
	Win (%)			80	





RQ5: Does FLASH save time for MO performance optimization?



- First **Cluster and then Sample** to avoid redundant samples
- Did not perform well in External Validation Studies

- First **Cluster and then Sample** to avoid redundant samples
- Did not perform well in External Validation Studies

Unsupervised clustering does not work in all cases

- First **Cluster and then Sample** to avoid redundant samples
- Did not perform well in External Validation Studies

Unsupervised clustering does not work in all cases

- The **Ranking** is a useful paradigm
 - Ranking is extremely robust to errors or outliers
 - reduces the number of training samples to train models
- Requires use of holdout set

- First Cluster and then Sample to avoid redundant samples
- Did not perform well in External Validation Studies

Unsupervised clustering does not work in all cases

- The Ranking is a useful paradigm
 - Ranking is extremely robust to errors or outliers
 - reduces the number of training samples to train models
- Requires use of holdout set

Evaluating holdout set can be expensive, hence not suitable in practice

- First Cluster and then Sample to avoid redundant samples
- Did not perform well in External Validation Studies

Unsupervised clustering does not work in all cases

- The **Ranking** is a useful paradigm
 - Ranking is extremely robust to errors or outliers
 - reduces the number of training samples to train models
- Requires use of holdout set

Evaluating holdout set can be expensive, hence not suitable in practice

 "Given what one knows about the problem, what can be done next?" is a powerful idea

- First Cluster and then Sample to avoid redundant samples
- Did not perform well in External Validation Studies

Unsupervised clustering does not work in all cases

- The Ranking is a useful paradigm
 - Ranking is extremely robust to errors or outliers
 - reduces the number of training samples to train models
- Requires use of holdout set

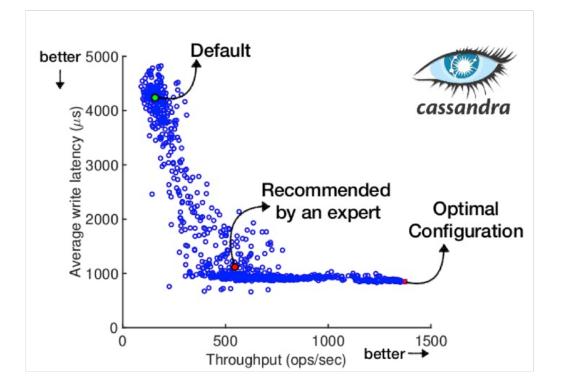
Evaluating holdout set can be expensive, hence not suitable in practice

 "Given what one knows about the problem, what can be done next?" is a powerful idea

Can expert knowledge be used to increase the rate of convergence?

Human in the loop Can expert knowledge be used to increase the rate of convergence?

Human ^{In V.} Can expert knowledge be used to increase the rate of convergence?



Human in the 1004 Can expert knowledge be used to increase the rate of convergence?

Can we learn from our experience to increase the rate of convergence or decrease the cost?

Human in the loop Human in the loop

Can we learn from our experience to increase the rate of convergence or decrease the cost?

FLASH has to be repeated if ever the **software** is updated on the **workload** of the system changes abruptly or **environment** changes.

Human in the loop Human in the loop Can expert knowledge be used to increase the rate of convergence? Transfer Learning Can we learn from our experience to increase the rate of convergence or decrease the cost?

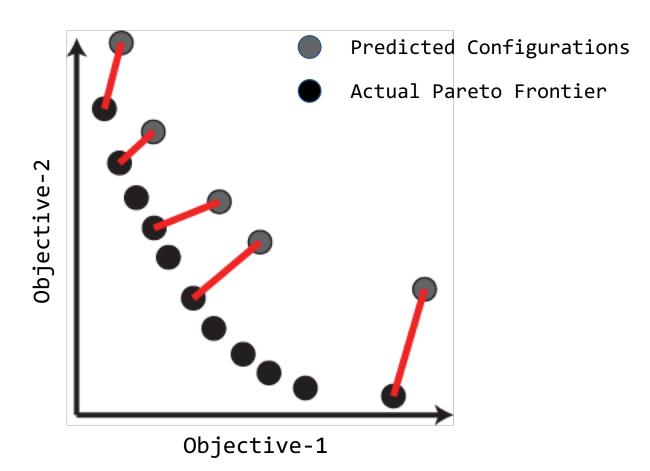
Human in the loop Human in the loop Can expert knowledge be used to increase the rate of convergence? Transfer Learning Can we learn from our experience to increase the rate of convergence or decrease the cost?

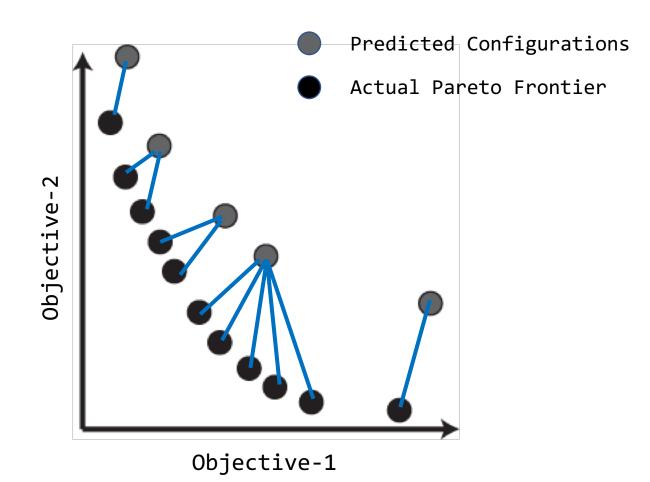
Can these ideas be applied to other domains?

Human in the loop Human in the loop Can expert knowledge be used to increase the rate of convergence? Transfer Learning Can we learn from our experience to increase the rate of convergence or decrease the cost? External Validity External Validity

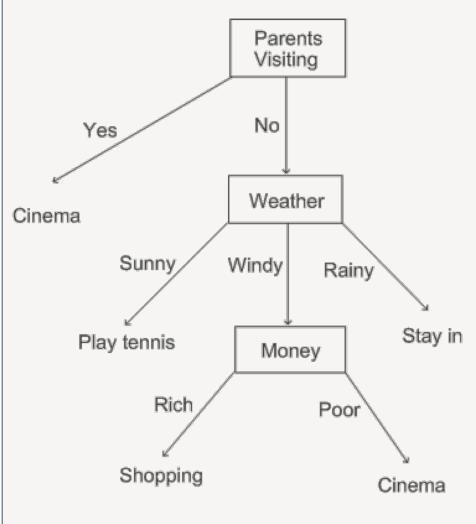
Thank you

"There's no sense in being precise when you don't even know what you're talking about." —John von Neumann





Decision Tree



- It worked!
- Prior work* used CART
- Scalable
- More comprehensible

[Guo'13] Guo, Jienmei, et al. "Variability-aware performance prediction: A statistical learning approach". ASE-2013 [Sarkar'15] Sarkar, Atri, et al. "Cost-efficient sampling for performance prediction of configurable systems (t)." ASE-2015 [Nair'16] Nair, Vivek, et al. "Faster discovery of faster system configurations with spectral learning." ASE Journal-2017

Software	REGR. MODEL	Acq. Function
Spearmint	Gaussian Process	Exp. Improv
MOE	Gaussian Process	Exp. Improv
Hyperopt	Tree Parzen Est.	Exp. Improv
SMAC	Random Forest	Exp. Improv